期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于SAE和LSTM RNN的多模态生理信号融合和情感识别研究 被引量:24
1
作者 李幼军 黄佳进 +1 位作者 王海渊 钟宁 《通信学报》 EI CSCD 北大核心 2017年第12期109-120,共12页
为了提高情感识别的分类准确率,提出一种将栈式自编码神经网络(SAE)和长短周期记忆单元循环神经网络(LSTM RNN)融合的多模态融合特征情感识别方法。该方法通过SAE对不同模态的生理特征进行信息融合和压缩,随后用LSTM RNN对长时间周期的... 为了提高情感识别的分类准确率,提出一种将栈式自编码神经网络(SAE)和长短周期记忆单元循环神经网络(LSTM RNN)融合的多模态融合特征情感识别方法。该方法通过SAE对不同模态的生理特征进行信息融合和压缩,随后用LSTM RNN对长时间周期的融合进行情感分类识别。通过将该方法用到开源数据集中进行验证,得到情感分类准确率达到0.792 6。实验结果表明,SAE对多模态生理特征进行了有效融合,LSTM RNN能够有效地对长时间周期中的关键特征进行识别。 展开更多
关键词 多模态生理信号情感识别 栈式自编码神经网络 长短周期记忆循环神经网络 多模态生理信号融合
在线阅读 下载PDF
基于BPSO的四种生理信号的情感状态识别 被引量:8
2
作者 杨瑞请 刘光远 《计算机科学》 CSCD 北大核心 2008年第3期137-138,154,共3页
通过生理信号来识别人的情感状态越来越引起人们的关注。如何提取有效的生理信号特征进行情感状态的分类,是情感识别的关键。本文采用离散二进制粒子群优化算法(BPSO)进行特征选择,以提高情感状态分类的效果。通过四种生理信号来识别四... 通过生理信号来识别人的情感状态越来越引起人们的关注。如何提取有效的生理信号特征进行情感状态的分类,是情感识别的关键。本文采用离散二进制粒子群优化算法(BPSO)进行特征选择,以提高情感状态分类的效果。通过四种生理信号来识别四种情感状态,用最近邻法进行分类,总体识别率达到85%。仿真实验结果表明,将BPSO方法用于生理信号的特征选择是可行的。 展开更多
关键词 生理信号 二进制粒子群算法 特征选择 情感识别
在线阅读 下载PDF
双重结构粒子群和KNN在生理信号情感识别中的应用 被引量:2
3
作者 程德福 刘光远 邱玉辉 《计算机应用》 CSCD 北大核心 2009年第5期1423-1425,1429,共4页
将双重结构的粒子群(DSPSO)应用到生理情感特征的选择中,提高了特征选择效果和情感识别的正确率。提出了增量K多类KNN分类器解决KNN在分多类时出现的不可分现象并改善了多类识别的效果。通过4种生理信号(EMG、SC、ECG、RSP)来识别4种情... 将双重结构的粒子群(DSPSO)应用到生理情感特征的选择中,提高了特征选择效果和情感识别的正确率。提出了增量K多类KNN分类器解决KNN在分多类时出现的不可分现象并改善了多类识别的效果。通过4种生理信号(EMG、SC、ECG、RSP)来识别4种情感(joy、anger、sadness、pleasure),同传统的SFFS算法以及BPSO算法相比,识别率有了较大的提高。仿真结果表明,DSPSO能较好地完成生理情感特征的选择任务。 展开更多
关键词 生理信号 粒子群优化 K近邻 特征选择 情感识别
在线阅读 下载PDF
基于生理信号的观众情感状态识别模型 被引量:1
4
作者 叶晓菡 陈岭 +1 位作者 姜贤塔 陈根才 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第6期995-1003,共9页
为研究电影情节与观众生理信号变化的关系,提出基于生理信号的观众情感状态识别模型,从观众生理信号中提取特征,采用顺序前进法(SFS)进行特征选择,并基于支持向量机(SVM)建立观众情感状态识别模型.实验选择了不同类型的3部影片,共11名... 为研究电影情节与观众生理信号变化的关系,提出基于生理信号的观众情感状态识别模型,从观众生理信号中提取特征,采用顺序前进法(SFS)进行特征选择,并基于支持向量机(SVM)建立观众情感状态识别模型.实验选择了不同类型的3部影片,共11名人员参加,在电影播放时拍摄观众表情并记录其生理信号,基于表情人工标注其情感状态.实验结果表明:该模型对各情感状态的区分较理想,平均识别率在90%以上. 展开更多
关键词 生理信号 电影 情感状态 观众 识别模型
在线阅读 下载PDF
用自适应蚁群算法的生理信号情感状态识别 被引量:2
5
作者 鲁舜 刘光远 《计算机应用》 CSCD 北大核心 2009年第B06期146-148,共3页
针对生理信号的情感识别问题,将蚁群优化算法用于情感生理信号特征选择,并采用自适应的适应度参数值、变异策略和临近位置交换策略对算法进行改进,使用K近邻法进行情感分类,以获得较高的识别率和有效特征组合。通过四种生理信号(EMG、SC... 针对生理信号的情感识别问题,将蚁群优化算法用于情感生理信号特征选择,并采用自适应的适应度参数值、变异策略和临近位置交换策略对算法进行改进,使用K近邻法进行情感分类,以获得较高的识别率和有效特征组合。通过四种生理信号(EMG、SC、ECG、RSP)来识别四种情感(joy、anger、sadness、pleasure),实验仿真结果表明,将蚁群优化算法引入情感识别的研究是可行的。 展开更多
关键词 情感识别 蚁群算法 自适应 生理信号 特征选择
在线阅读 下载PDF
基于进化策略的生理信号情感识别 被引量:1
6
作者 郝敏 刘光远 温万惠 《智能系统学报》 2009年第4期352-356,共5页
针对生理信号的情感识别问题,采用进化策略方法对生理信号进行特征选择,利用智能优化算法的计算复杂度低和收敛速度快等特点,并结合使用近邻法进行分类,有效地解决了生理信号特征组合优化问题,筛选出一定的特征子集来表示相应的人类情... 针对生理信号的情感识别问题,采用进化策略方法对生理信号进行特征选择,利用智能优化算法的计算复杂度低和收敛速度快等特点,并结合使用近邻法进行分类,有效地解决了生理信号特征组合优化问题,筛选出一定的特征子集来表示相应的人类情感状态.实验仿真表明,该方法可以得到有效的特征组合来进行生理信号的情感状态识别. 展开更多
关键词 进化策略 情感识别 生理信号 特征选择
在线阅读 下载PDF
用分层循环遗传算法去识别生理信号情感状态
7
作者 郝敏 刘光远 《计算机工程与应用》 CSCD 北大核心 2010年第1期103-105,121,共4页
针对生理信号的情感识别问题,采用自适应分层式遗传算法方法对生理信号进行特征选择,能有效地解决特征组合优化问题。实验仿真表明,可以得到有效地特征组合来进行生理信号情感状态识别。
关键词 遗传算法 情感识别 生理信号 特征选择 循环策略
在线阅读 下载PDF
改进的支持向量机在情感识别中的应用 被引量:2
8
作者 李强 刘光远 赖祥伟 《计算机应用》 CSCD 北大核心 2014年第A01期117-119,155,共4页
针对传统支持向量机核函数参数σ、惩罚系数γ以及不敏感损失常数ε需要优化的问题,提出模拟退火免疫粒子群算法(SA-IPSO)优化支持向量机(SVM)关键参数σ、γ、ε的方法。并使用BIOPAC MP150对于630名被试者进行了情感激发状态下的心电... 针对传统支持向量机核函数参数σ、惩罚系数γ以及不敏感损失常数ε需要优化的问题,提出模拟退火免疫粒子群算法(SA-IPSO)优化支持向量机(SVM)关键参数σ、γ、ε的方法。并使用BIOPAC MP150对于630名被试者进行了情感激发状态下的心电生理信号采集,构建可靠的情感生理信号数据库,用该算法对其分类,与模拟退火支持向量机(SA-SVM)以及默认参数支持向量机相比,识别率更高,误报率更低,说明该算法在情感识别领域识别效果优于传统支持向量机。 展开更多
关键词 支持向量机 模拟退火 粒子群优化算法 情感识别 生理信号
在线阅读 下载PDF
多视角判别分析的情感识别 被引量:2
9
作者 李超 赵文萍 赵子平 《信号处理》 CSCD 北大核心 2018年第8期998-1007,共10页
自主神经系统(ANS)活动在情感表达上的客观性,使得基于生理信号的情感识别引起了研究者的广泛关注。然而,情感表达是多模态的,仅使用单一模态或简单地对多模态情感数据进行拼接不能保证情感识别的精度。因此,本文提出使用多视角判别分... 自主神经系统(ANS)活动在情感表达上的客观性,使得基于生理信号的情感识别引起了研究者的广泛关注。然而,情感表达是多模态的,仅使用单一模态或简单地对多模态情感数据进行拼接不能保证情感识别的精度。因此,本文提出使用多视角判别分析方法(Multi-view Discriminant Analysis Method,MDAM)进行情感识别,将多个模态的情感生理数据看作情感表达的多个视角,通过最大化所有模态下情感数据的类间散度矩阵和类内散度矩阵之比,找到多组投影,使得投影后的情感数据位于一个具有判别性的通用空间中,在此空间中,同类情感样本的类内距离最小,而异类样本间的距离最大,从而为多模态情感识别提供有效的情感判别特征。实验结果表明,相较于传统情感识别方法,本文的方法在公开的情感数据集DEAP dataset上取得了很好的识别效果。 展开更多
关键词 情感识别 多模态生理信号 多视角判别分析
在线阅读 下载PDF
基于长短记忆与信息注意的视频–脑电交互协同情感识别 被引量:7
10
作者 刘嘉敏 苏远歧 +1 位作者 魏平 刘跃虎 《自动化学报》 EI CSCD 北大核心 2020年第10期2137-2147,共11页
基于视频–脑电信号交互协同的情感识别是人机交互重要而具有挑战性的研究问题.本文提出了基于长短记忆神经网络(Long-short term memory,LSTM)和注意机制(Attention mechanism)的视频–脑电信号交互协同的情感识别模型.模型的输入是实... 基于视频–脑电信号交互协同的情感识别是人机交互重要而具有挑战性的研究问题.本文提出了基于长短记忆神经网络(Long-short term memory,LSTM)和注意机制(Attention mechanism)的视频–脑电信号交互协同的情感识别模型.模型的输入是实验参与人员观看情感诱导视频时采集到的人脸视频与脑电信号,输出是实验参与人员的情感识别结果.该模型在每一个时间点上同时提取基于卷积神经网络(Convolution neural network,CNN)的人脸视频特征与对应的脑电信号特征,通过LSTM进行融合并预测下一个时间点上的关键情感信号帧,直至最后一个时间点上计算出情感识别结果.在这一过程中,该模型通过空域频带注意机制计算脑电信号α波,β波与θ波的重要度,从而更加有效地利用脑电信号的空域关键信息;通过时域注意机制,预测下一时间点上的关键信号帧,从而更加有效地利用情感数据的时域关键信息.本文在MAHNOB-HCI和DEAP两个典型数据集上测试了所提出的方法和模型,取得了良好的识别效果.实验结果表明本文的工作为视频–脑电信号交互协同的情感识别问题提供了一种有效的解决方法. 展开更多
关键词 情感识别 长短记忆神经网络 时–空注意机制 多模态信号融合
在线阅读 下载PDF
用异质迁移学习构建跨被试脑电情感模型 被引量:14
11
作者 郑伟龙 石振锋 吕宝粮 《计算机学报》 EI CSCD 北大核心 2020年第2期177-189,共13页
由于脑电信号的个体差异性和非平稳特性对情感模型性能产生影响,如何构建跨被试脑电情感模型是情感脑-机接口领域的一个重要研究方向.本文提出一种新的从眼睛的扫视轨迹进行知识迁移的异质迁移学习方法,以提升跨被试脑电情感模型的性能... 由于脑电信号的个体差异性和非平稳特性对情感模型性能产生影响,如何构建跨被试脑电情感模型是情感脑-机接口领域的一个重要研究方向.本文提出一种新的从眼睛的扫视轨迹进行知识迁移的异质迁移学习方法,以提升跨被试脑电情感模型的性能.该方法的主要神经生理学依据是,被试的视觉注视诱发了大脑特定的神经活动,而这些神经活动产生的脑电信号可以为情绪识别提供重要的情境线索.为了量化不同被试之间的域差异,我们引入了基于扫视轨迹和基于脑电信号的核矩阵,并提出了改进的直推式参数迁移学习算法,以实现跨被试脑电情感模型的构建.该方法与传统方法相比,具有两个优点:一是利用了目标被试容易获取的眼动追踪数据进行被试迁移,二是在目标被试只有眼动追踪数据的情况下,仍然能够从其他被试的历史数据中学到脑电信号的情绪类别判别信息.为了验证所提方法的有效性,我们对本文提出的方法与已有的迁移方法在三类情绪识别的脑电和眼动数据集上进行了系统的对比实验研究.实验结果表明,基于眼动轨迹的迁移模型取得了与基于脑电信号的迁移模型相当的识别性能.相对于传统的通用分类器50.46%的平均准确率,基于眼动轨迹的迁移模型的平均准确率达到了69.72%. 展开更多
关键词 情感脑-机接口 多模态情绪识别 跨被试情感模型 迁移学习 脑电信号 眼动信号 扫视轨迹
在线阅读 下载PDF
基于IMF能量矩的脑电情绪特征提取研究 被引量:2
12
作者 王成龙 韦巍 李天永 《现代电子技术》 北大核心 2018年第20期10-13,共4页
为了提高脑电信号情绪识别分类的准确率,在小波变换的基础上,结合经验模态分解(EMD)和能量矩提出一种新的脑电特征提取方法。该研究利用小波变换提取左右前额叶(AF3,AF4)、左右额叶(F3,F4)和左右顶叶(FC5,FC6)通道的α波、θ波、β波和... 为了提高脑电信号情绪识别分类的准确率,在小波变换的基础上,结合经验模态分解(EMD)和能量矩提出一种新的脑电特征提取方法。该研究利用小波变换提取左右前额叶(AF3,AF4)、左右额叶(F3,F4)和左右顶叶(FC5,FC6)通道的α波、θ波、β波和γ波节律;对提取的脑电节律进行EMD分解获得固有模态函数(IMF)分量,再进一步提取IMF分量的能量矩特征;最后使用支持向量机实现情感状态评估。实验结果表明,将IMF能量矩用于脑电信号情感识别是可行的。 展开更多
关键词 小波变换 经验模态分解 本征模态函数 能量矩 脑电信号 情感识别
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部