以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融...以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融合和Stacking集成学习技术的Tor网络流量识别方法rtTorTIM。具体来讲,该方法首先提取Tor网络流量的主机级、流级和包级3种模态相关特征并构造特征数据集;随后,rtTorTIM选取随机森林、线性回归和K-近邻方法作为基学习器,并使用一个线性神经网络进行决策融合,从而构建起一个2层Stacking流量分类器。基于ISCX Tor 2016公开数据集的对比实验结果表明,rtTorTIM方法在Tor流量识别上的准确率、精确率和召回率均达到了99%,同时该方法在分类实时性上也展现出更优的性能。展开更多
[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-base...[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.展开更多
文摘以Tor网络为代表的匿名网络在带来强隐私性保护的同时也为网络违法犯罪活动提供了温床,因此,开展实时、高精度的Tor网络流量识别研究具有重要的现实意义。为此,针对现有研究存在泛化性不强和实时性差等问题,提出了一种基于多模态特征融合和Stacking集成学习技术的Tor网络流量识别方法rtTorTIM。具体来讲,该方法首先提取Tor网络流量的主机级、流级和包级3种模态相关特征并构造特征数据集;随后,rtTorTIM选取随机森林、线性回归和K-近邻方法作为基学习器,并使用一个线性神经网络进行决策融合,从而构建起一个2层Stacking流量分类器。基于ISCX Tor 2016公开数据集的对比实验结果表明,rtTorTIM方法在Tor流量识别上的准确率、精确率和召回率均达到了99%,同时该方法在分类实时性上也展现出更优的性能。
文摘[Objective]Accurate prediction of tomato growth height is crucial for optimizing production environments in smart farming.However,current prediction methods predominantly rely on empirical,mechanistic,or learning-based models that utilize either images data or environmental data.These methods fail to fully leverage multi-modal data to capture the diverse aspects of plant growth comprehensively.[Methods]To address this limitation,a two-stage phenotypic feature extraction(PFE)model based on deep learning algorithm of recurrent neural network(RNN)and long short-term memory(LSTM)was developed.The model integrated environment and plant information to provide a holistic understanding of the growth process,emploied phenotypic and temporal feature extractors to comprehensively capture both types of features,enabled a deeper understanding of the interaction between tomato plants and their environment,ultimately leading to highly accurate predictions of growth height.[Results and Discussions]The experimental results showed the model's ef‐fectiveness:When predicting the next two days based on the past five days,the PFE-based RNN and LSTM models achieved mean absolute percentage error(MAPE)of 0.81%and 0.40%,respectively,which were significantly lower than the 8.00%MAPE of the large language model(LLM)and 6.72%MAPE of the Transformer-based model.In longer-term predictions,the 10-day prediction for 4 days ahead and the 30-day prediction for 12 days ahead,the PFE-RNN model continued to outperform the other two baseline models,with MAPE of 2.66%and 14.05%,respectively.[Conclusions]The proposed method,which leverages phenotypic-temporal collaboration,shows great potential for intelligent,data-driven management of tomato cultivation,making it a promising approach for enhancing the efficiency and precision of smart tomato planting management.