期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于自适应联合字典学习的脑部多模态图像融合方法 被引量:4
1
作者 王丽芳 董侠 +1 位作者 秦品乐 高媛 《计算机应用》 CSCD 北大核心 2018年第4期1134-1140,共7页
针对目前全局训练字典对于脑部医学图像的自适应性不强,以及使用稀疏表示系数的L1范数取极大的融合方式易造成图像的灰度不连续效应进而导致图像融合效果欠佳的问题,提出一种基于自适应联合字典学习的脑部多模态图像融合方法。该方法首... 针对目前全局训练字典对于脑部医学图像的自适应性不强,以及使用稀疏表示系数的L1范数取极大的融合方式易造成图像的灰度不连续效应进而导致图像融合效果欠佳的问题,提出一种基于自适应联合字典学习的脑部多模态图像融合方法。该方法首先使用改进的K奇异值分解(K-SVD)算法自适应地从已配准的源图像中学习得到子字典并组合成自适应联合字典,在自适应联合字典的作用下由系数重用正交匹配追踪(CoefROMP)算法计算得到稀疏表示系数;然后将稀疏表示系数的"多范数"作为源图像块的活跃度测量,并提出"自适应加权平均"与"选择最大"相结合的无偏规则,根据稀疏表示系数的"多范数"的相似度选择融合规则,当"多范数"的相似度大于阈值时,使用"自适应加权平均"的规则,反之则使用"选择最大"的规则融合稀疏表示系数;最后根据融合系数与自适应联合字典重构融合图像。实验结果表明,与其他三种基于多尺度变换的方法和五种基于稀疏表示的方法相比,所提方法的融合图像能够保留更多的图像细节信息,对比度和清晰度较好,病灶边缘清晰,客观参数标准差、空间频率、互信息、基于梯度指标、基于通用图像质量指标和平均结构相似指标在三组实验条件下的均值分别为:71.078 3、21.970 8、3.679 0、0.660 3、0.735 2和0.733 9。该方法可以应用于临床诊断和辅助治疗。 展开更多
关键词 脑部多模态图像融合 K奇异值分解 自适应联合字典 系数重用正交匹配追踪 稀疏表示 多范数 无偏规则
在线阅读 下载PDF
基于多模态图像融合的早期蕈样肉芽肿识别 被引量:1
2
作者 谢凤英 赵丹培 +4 位作者 王可 刘兆睿 王煜坤 张漪澜 刘洁 《数据采集与处理》 CSCD 北大核心 2023年第4期792-801,共10页
早期蕈样肉芽肿(Mycosis fungoid,MF)可表现为红斑鳞屑性皮损,很难从银屑病及慢性湿疹等良性炎症性皮肤病中鉴别出来。本文提出了一种基于多模态图像融合的早期蕈样肉芽肿识别方法。该方法基于皮肤镜图像和临床图像,采用ResNet18网络提... 早期蕈样肉芽肿(Mycosis fungoid,MF)可表现为红斑鳞屑性皮损,很难从银屑病及慢性湿疹等良性炎症性皮肤病中鉴别出来。本文提出了一种基于多模态图像融合的早期蕈样肉芽肿识别方法。该方法基于皮肤镜图像和临床图像,采用ResNet18网络提取单模态图像的特征;设计跨模态的注意力模块,实现两种模态图像的特征融合;并且设计自注意力模块提取融合特征中的关键信息,改善信息冗余,从而提高蕈样肉芽肿智能识别的准确度。实验结果表明,本文所提出的智能诊断模型优于对比算法。将本文模型应用于皮肤科医生的实际临床诊断,通过实验组医生和对照组医生平均诊断准确率的变化证实了本文模型能够有效提升临床诊断水平。 展开更多
关键词 皮肤镜图像 临床图像 多模态图像融合 临床应用 辅助诊断
在线阅读 下载PDF
基于结构功能交叉神经网络的多模态医学图像融合 被引量:1
3
作者 邸敬 郭文庆 +2 位作者 任莉 杨燕 廉敬 《光学精密工程》 EI CAS CSCD 北大核心 2024年第2期252-267,共16页
针对多模态医学图像融合中存在纹理细节模糊和对比度低的问题,提出了一种结构功能交叉神经网络的多模态医学图像融合方法。首先,根据医学图像的结构信息和功能信息设计了结构功能交叉神经网络模型,不仅有效地提取解剖学和功能学医学图... 针对多模态医学图像融合中存在纹理细节模糊和对比度低的问题,提出了一种结构功能交叉神经网络的多模态医学图像融合方法。首先,根据医学图像的结构信息和功能信息设计了结构功能交叉神经网络模型,不仅有效地提取解剖学和功能学医学图像的结构信息和功能信息,而且能够实现这两种信息之间的交互,从而很好地提取医学图像的纹理细节信息。其次,利用交叉网络通道和空间特征变化构造了一种新的注意力机制,通过不断调整结构信息和功能信息权重来融合图像,提高了融合图像的对比度和轮廓信息。最后,设计了一个从融合图像到源图像的分解过程,由于分解图像的质量直接取决于融合结果,因此分解过程可以使融合图像包含更多的细节信息。通过与近年来提出的7种高水平方法相比,本文方法的AG,EN,SF,MI,QAB/F和CC客观评价指标分别平均提高了22.87%,19.64%,23.02%,12.70%,6.79%,30.35%,说明本文方法能够获得纹理细节更清晰、对比度更好的融合结果,在主观视觉和客观指标上都优于其他对比算法。 展开更多
关键词 多模态医学图像融合 结构功能信息交叉网络 注意力机制 分解网络
在线阅读 下载PDF
基于高低频特征分解的深度多模态医学图像融合网络 被引量:6
4
作者 王欣雨 刘慧 +2 位作者 朱积成 盛玉瑞 张彩明 《图学学报》 CSCD 北大核心 2024年第1期65-77,共13页
多模态医学图像融合旨在利用跨模态图像的相关性和信息互补性,以增强医学图像在临床应用中的可读性和适用性。然而,现有手工设计的模型无法有效地提取关键目标特征,从而导致融合图像模糊、纹理细节丢失等问题。为此,提出了一种新的基于... 多模态医学图像融合旨在利用跨模态图像的相关性和信息互补性,以增强医学图像在临床应用中的可读性和适用性。然而,现有手工设计的模型无法有效地提取关键目标特征,从而导致融合图像模糊、纹理细节丢失等问题。为此,提出了一种新的基于高低频特征分解的深度多模态医学图像融合网络,将通道注意力和空间注意力机制引入融合过程,在保持全局结构的基础上保留了局部纹理细节信息,实现了更加细致的融合。首先,通过预训练模型VGG-19提取两种模态图像的高频特征,并通过下采样提取其低频特征,形成高低频中间特征图。其次,在特征融合模块嵌入残差注意力网络,依次从通道和空间维度推断注意力图,并将其用来指导输入特征图的自适应特征优化过程。最后,重构模块形成高质量特征表示并输出融合图像。实验结果表明,该算法在Harvard公开数据集和自建腹部数据集峰值信噪比提升8.29%,结构相似性提升85.07%,相关系数提升65.67%,特征互信息提升46.76%,视觉保真度提升80.89%。 展开更多
关键词 多模态医学图像融合 预训练模型 深度学习 高低频特征提取 残差注意力网络
在线阅读 下载PDF
基于残差密集融合对抗生成网络的PET-MRI图像融合
5
作者 刘尚旺 杨荔涵 《河南师范大学学报(自然科学版)》 CAS 北大核心 2024年第1期74-83,I0005,共11页
为了增强核磁共振与正电子发射断层扫描图像融合的纹理细节,摆脱人工设计融合规则对先验知识的依赖.提出了自适应的残差密集生成对抗网络(adaptive dense residual generative adversarial network,ADRGAN)来融合两种模态的医学图像.ADR... 为了增强核磁共振与正电子发射断层扫描图像融合的纹理细节,摆脱人工设计融合规则对先验知识的依赖.提出了自适应的残差密集生成对抗网络(adaptive dense residual generative adversarial network,ADRGAN)来融合两种模态的医学图像.ADRGAN设计了区域残差学习模块与输出级联生成器,在加深网络结构的同时避免特征丢失;然后,设计了基于自适应模块的内容损失函数,强化输出融合图像的内容信息;最后,通过源图像的联合梯度图与融合图像的梯度图构建对抗性博弈来高效训练生成器与鉴别器.实验结果表明,ADRGAN在哈佛医学院MRI/PET数据集的测试中峰值信噪比和结构相似度分别达到55.2124和0.4697,均优于目前最先进的算法;所构建的模型具有端对端和无监督两特性,无需人工干预,也不需要真实数据作为标签. 展开更多
关键词 深度学习 对抗生成网络 多模态图像融合 密集残差网络
在线阅读 下载PDF
实时超声-X线透视图像融合技术研究及应用进展
6
作者 钱山 杨明雷 +2 位作者 黄峰 王文馨 袁红美 《中国介入影像与治疗学》 北大核心 2021年第8期505-508,共4页
X线透视成像与超声成像优势互补,同时显示两种图像,可精确可视化手术器械及软组织结构,现已广泛用于心脏介入手术;但需要多个屏幕及操作人员高度配合。实时超声-X线透视图像融合技术能有效解决相关问题。本文对实时超声-X线透视图像融... X线透视成像与超声成像优势互补,同时显示两种图像,可精确可视化手术器械及软组织结构,现已广泛用于心脏介入手术;但需要多个屏幕及操作人员高度配合。实时超声-X线透视图像融合技术能有效解决相关问题。本文对实时超声-X线透视图像融合技术研究及应用进展进行综述。 展开更多
关键词 超声心动描记术 X线透视检查 介入治疗 影像引导 多模态图像融合
在线阅读 下载PDF
Test method of laser paint removal based on multi-modal feature fusion
7
作者 HUANG Hai-peng HAO Ben-tian +2 位作者 YE De-jun GAO Hao LI Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3385-3398,共14页
Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion net... Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion network model was constructed based on a laser paint removal experiment. The alignment of heterogeneous data under different modals was solved by combining the piecewise aggregate approximation and gramian angular field. Moreover, the attention mechanism was introduced to optimize the dual-path network and dense connection network, enabling the sampling characteristics to be extracted and integrated. Consequently, the multi-modal discriminant detection of laser paint removal was realized. According to the experimental results, the verification accuracy of the constructed model on the experimental dataset was 99.17%, which is 5.77% higher than the optimal single-modal detection results of the laser paint removal. The feature extraction network was optimized by the attention mechanism, and the model accuracy was increased by 3.3%. Results verify the improved classification performance of the constructed multi-modal feature fusion model in detecting laser paint removal, the effective integration of acoustic data and visual image data, and the accurate detection of laser paint removal. 展开更多
关键词 laser cleaning multi-modal fusion image processing deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部