期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多模态关联图的图像语义标注方法 被引量:2
1
作者 郭玉堂 罗斌 《计算机应用》 CSCD 北大核心 2010年第A12期3295-3297,3303,共4页
为了改善图像标注的性能,提出了一种基于多模态关联图的图像语义标注方法。该方法用一个无向图表达了图像区域特征、标注词以及图像三者之间的关系,结合图像区域特征相似性和语义间的相关性提取图像语义信息,提高了图像标注的精度。利... 为了改善图像标注的性能,提出了一种基于多模态关联图的图像语义标注方法。该方法用一个无向图表达了图像区域特征、标注词以及图像三者之间的关系,结合图像区域特征相似性和语义间的相关性提取图像语义信息,提高了图像标注的精度。利用逆向文档频率(IDF)修正图像节点与其标注词节点之间边的权值,克服了传统方法中因高频词引起的偏差,有效地提高了图像标注的性能。在Corel图像数据集上进行了实验,实验结果验证了该方法的有效性。 展开更多
关键词 像语义 多模态图 逆向文档频率 高频词
在线阅读 下载PDF
Test method of laser paint removal based on multi-modal feature fusion
2
作者 HUANG Hai-peng HAO Ben-tian +2 位作者 YE De-jun GAO Hao LI Liang 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第10期3385-3398,共14页
Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion net... Laser cleaning is a highly nonlinear physical process for solving poor single-modal(e.g., acoustic or vision)detection performance and low inter-information utilization. In this study, a multi-modal feature fusion network model was constructed based on a laser paint removal experiment. The alignment of heterogeneous data under different modals was solved by combining the piecewise aggregate approximation and gramian angular field. Moreover, the attention mechanism was introduced to optimize the dual-path network and dense connection network, enabling the sampling characteristics to be extracted and integrated. Consequently, the multi-modal discriminant detection of laser paint removal was realized. According to the experimental results, the verification accuracy of the constructed model on the experimental dataset was 99.17%, which is 5.77% higher than the optimal single-modal detection results of the laser paint removal. The feature extraction network was optimized by the attention mechanism, and the model accuracy was increased by 3.3%. Results verify the improved classification performance of the constructed multi-modal feature fusion model in detecting laser paint removal, the effective integration of acoustic data and visual image data, and the accurate detection of laser paint removal. 展开更多
关键词 laser cleaning multi-modal fusion image processing deep learning
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部