期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于LBP和Fisherfaces的多模态人脸识别 被引量:16
1
作者 叶剑华 刘正光 《计算机工程》 CAS CSCD 北大核心 2009年第11期193-195,共3页
提出一种结合局部二值模式(LBP)和Fisherfaces的多模态人脸识别方法。用LBP算子提取人脸灰度图像和深度图像的区域LBP直方图序列(LBPHS),再采用Fisherfaces分别构建相应的线性子空间,用余弦相似度作为投影向量的相似度量,用加权求和规... 提出一种结合局部二值模式(LBP)和Fisherfaces的多模态人脸识别方法。用LBP算子提取人脸灰度图像和深度图像的区域LBP直方图序列(LBPHS),再采用Fisherfaces分别构建相应的线性子空间,用余弦相似度作为投影向量的相似度量,用加权求和规则进行信息融合。在FRGC数据库上的实验结果表明,该方法要明显优于LBPHS与直方图交及Fisherfaces与余弦相似度的融合,等错误率仅为0.33%。 展开更多
关键词 局部二值模式 Fisherfaces方法 多模态人脸识别
在线阅读 下载PDF
多模态人脸识别融合方法比较研究 被引量:6
2
作者 叶剑华 刘正光 《计算机工程与应用》 CSCD 北大核心 2009年第19期153-156,共4页
比较研究了多模态人脸识别中的5种匹配得分级融合方法。首先用局部二值模式(Local Binary Pattern,LBP)算子分别提取人脸灰度图像和深度图像的区域LBP直方图序列(LBP Histogram Sequence,LBPHS),采用Fisherfaces分别构建相应的线性子空... 比较研究了多模态人脸识别中的5种匹配得分级融合方法。首先用局部二值模式(Local Binary Pattern,LBP)算子分别提取人脸灰度图像和深度图像的区域LBP直方图序列(LBP Histogram Sequence,LBPHS),采用Fisherfaces分别构建相应的线性子空间,用余弦相似度计算投影向量的匹配得分,再采用5种方法对匹配得分进行融合。在FRGC数据库上的实验结果表明,除最小匹配得分外,其他融合方法的识别性能都要优于单一模态的方法。 展开更多
关键词 局部二值模式 Fisherfaces 多模态人脸识别 融合
在线阅读 下载PDF
基于局部二值模式和级联AdaBoost的多模态人脸识别 被引量:5
3
作者 叶剑华 刘正光 《计算机应用》 CSCD 北大核心 2008年第11期2853-2855,2883,共4页
提出了一种基于局部二值模式(LBP)和级联AdaBoost的多模态人脸识别方法。采用级联AdaBoost算法分别从人脸深度图像和灰度图像的大量区域LBP直方图(RLBPH)中选出最有利于分类的少量特征,并连接成一个直方图向量,再分别用线性判别分析构... 提出了一种基于局部二值模式(LBP)和级联AdaBoost的多模态人脸识别方法。采用级联AdaBoost算法分别从人脸深度图像和灰度图像的大量区域LBP直方图(RLBPH)中选出最有利于分类的少量特征,并连接成一个直方图向量,再分别用线性判别分析构建相应的线性子空间,用余弦相似度作为投影向量的相似度量,用求和规则进行信息融合。在FRGC数据库上的实验结果表明,提出的方法采用少量的特征取得了很好的识别效果,等错误率仅为1.40%。 展开更多
关键词 局部二值模式 级联AdaBoost 多模态人脸识别 线性判别分析
在线阅读 下载PDF
面向人脸识别的多模态研究方法综述
4
作者 杨雅莉 黎英 +1 位作者 章育涛 宋佩华 《计算机应用》 北大核心 2025年第5期1645-1657,共13页
多模态人脸识别技术能充分利用人脸特征或其他生物特征提高识别的鲁棒性和安全性,具有广泛的实际应用价值。由于目前的多模态人脸识别研究存在模态差距和模态信息难以高效融合等问题,因此根据多种信息模态和应用目的对现有的多模态人脸... 多模态人脸识别技术能充分利用人脸特征或其他生物特征提高识别的鲁棒性和安全性,具有广泛的实际应用价值。由于目前的多模态人脸识别研究存在模态差距和模态信息难以高效融合等问题,因此根据多种信息模态和应用目的对现有的多模态人脸识别方法进行分类综述,以梳理研究中存在的问题,并探讨未来的发展方向。首先,将基于多源信息融合的多模态人脸识别研究按照数据处理的不同阶段分为传感器级、特征级、评分级和决策级,并归纳现有方法的优势、局限性和适用场景;其次,将信息增强多模态人脸识别研究按照被增强模态的不同分为2D-3D信息增强和3D-2D信息增强,并总结现有方法的优缺点;再次,归纳总结基于其他生物特征和面向反欺诈的多模态人脸识别方法,并简要介绍常用的多模态人脸识别数据集相关信息;最后,给出多模态人脸识别研究中存在的一些严峻挑战,并展望未来的研究方向。 展开更多
关键词 多模态人脸识别 特征融合 信息增强 生物特征 反欺诈
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部