期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
多分辨率多模型目标跟踪方法的三处理机并行实现 被引量:1
1
作者 许录平 张小淼 《现代雷达》 CSCD 北大核心 1999年第6期55-59,共5页
介绍了一种用于噪声中机动目标跟踪的小波变换新算法——多分辨率多模型目标跟踪方法。该算法利用小波变换获取多分辨率测量数据,增大了机动检测概率,但需要几倍于传统算法的运算量,难以在实际跟踪系统中实时应用。对此,采用并行处... 介绍了一种用于噪声中机动目标跟踪的小波变换新算法——多分辨率多模型目标跟踪方法。该算法利用小波变换获取多分辨率测量数据,增大了机动检测概率,但需要几倍于传统算法的运算量,难以在实际跟踪系统中实时应用。对此,采用并行处理技术,给出了该算法在包含3个CPU的多总线微机系统上井行实现的方法。模拟结果证明了该方法的优良性能,并行处理时间接近传统的单分辨率跟踪算法的处理时间。 展开更多
关键词 多模型目标跟踪 并行处理 小波交换 多分辨率
在线阅读 下载PDF
基于强跟踪滤波器的多目标跟踪方法 被引量:23
2
作者 徐毓 金以慧 杨瑞娟 《传感器技术》 CSCD 北大核心 2002年第3期17-20,共4页
在诸多的多目标跟踪算法中 ,相互作用多模型 (IMM )算法是目前公认的最为有效的算法。但到目前为止 ,IMM估计方法都是建立在卡尔曼滤波器 (KF)和扩展卡尔曼滤波器 (EKF)基础上 ,因而其性能不仅依赖于所采用的模型集 ,而且在更大程度上... 在诸多的多目标跟踪算法中 ,相互作用多模型 (IMM )算法是目前公认的最为有效的算法。但到目前为止 ,IMM估计方法都是建立在卡尔曼滤波器 (KF)和扩展卡尔曼滤波器 (EKF)基础上 ,因而其性能不仅依赖于所采用的模型集 ,而且在更大程度上依赖于所采用的滤波技术。强跟踪滤波器 (STF)克服了卡尔曼和扩展卡尔曼的三大缺陷 ,因而设计一种基于STF的IMM目标跟踪算法显然能提高其性能。仿真实验表明 。 展开更多
关键词 多模型目标跟踪 卡尔曼滤波器 跟踪滤波器 相互作用多模型 雷达
在线阅读 下载PDF
Dynamic cluster member selection method for multi-target tracking in wireless sensor network 被引量:8
3
作者 蔡自兴 文莎 刘丽珏 《Journal of Central South University》 SCIE EI CAS 2014年第2期636-645,共10页
Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a s... Multi-target tracking(MTT) is a research hotspot of wireless sensor networks at present.A self-organized dynamic cluster task allocation scheme is used to implement collaborative task allocation for MTT in WSN and a special cluster member(CM) node selection method is put forward in the scheme.An energy efficiency model was proposed under consideration of both energy consumption and remaining energy balance in the network.A tracking accuracy model based on area-sum principle was also presented through analyzing the localization accuracy of triangulation.Then,the two models mentioned above were combined to establish dynamic cluster member selection model for MTT where a comprehensive performance index function was designed to guide the CM node selection.This selection was fulfilled using genetic algorithm.Simulation results show that this method keeps both energy efficiency and tracking quality in optimal state,and also indicate the validity of genetic algorithm in implementing CM node selection. 展开更多
关键词 wireless sensor networks multi-target tracking collaborative task allocation dynamic cluster comprehensive performance index function
在线阅读 下载PDF
SMC-PHD based multi-target track-before-detect with nonstandard point observations model 被引量:5
4
作者 占荣辉 高彦钊 +1 位作者 胡杰民 张军 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期232-240,共9页
Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method ... Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio(SNR). A modified multi-target track-before-detect(TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo(SMC)-based probability hypothesis density(PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data. 展开更多
关键词 adaptive particle sampling multi-target track-before-detect probability hypothesis density(PHD) filter sequential Monte Carlo(SMC) method
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部