期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于多模型并行融合网络的恶意流量检测方法 被引量:2
1
作者 李向军 王俊洪 +3 位作者 王诗璐 陈金霞 孙纪涛 王建辉 《计算机应用》 CSCD 北大核心 2023年第S02期122-129,共8页
针对单一串行深度学习检测模型提取流量特征时无法完整反映原始流量信息,且恶意流量识别精度低的问题,设计多模型并行融合网络,提出一种基于多模型并行融合网络的恶意流量检测方法。所提方法采用并行方式,融合一维卷积神经网络(1D-CNN)... 针对单一串行深度学习检测模型提取流量特征时无法完整反映原始流量信息,且恶意流量识别精度低的问题,设计多模型并行融合网络,提出一种基于多模型并行融合网络的恶意流量检测方法。所提方法采用并行方式,融合一维卷积神经网络(1D-CNN)与双向长短期记忆(Bi-LSTM)网络进行特征提取和流量识别,各条支路均直接面向原始流量,同时提取流量的空间特征与时序特征,采用共同的全连接层进行特征融合,可更精准地反映原始流量信息并有效提高恶意流量的识别准确率。在开源NSL-KDD数据集上的实验结果表明,所提方法恶意流量检测的特征提取能力、鲁棒性以及在线学习能力等方面均表现了优越的性能。 展开更多
关键词 恶意流量检测 深度学习 多模型并行融合 卷积神经网络 双向长短期记忆网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部