In this paper,we introduce the method of leaps and bounds regression which canbe used to select variables quickly and obtain the best regression models-These models con-tain one variable, two variables, three variable...In this paper,we introduce the method of leaps and bounds regression which canbe used to select variables quickly and obtain the best regression models-These models con-tain one variable, two variables, three variables and so on- The results obtained by usingleaps and bounds regression were compared with those achieved by using stepwise regressionto lead to the conclusion that leaps and bounds regression is an effective method.展开更多
Evaluating how park characteristics affect the formation of a park cool island(PCI) is the premise of guiding green parks planning in mountain cities.The diurnal variation of PCI intensity was achieved,and correlation...Evaluating how park characteristics affect the formation of a park cool island(PCI) is the premise of guiding green parks planning in mountain cities.The diurnal variation of PCI intensity was achieved,and correlations between PCI intensity and park characteristics such as park area,landscape shape index(LSI),green ratio and altitude were analyzed,using 3 010 temperature and humidity data from measurements in six parks with typical park characteristics in Chongqing,China.The results indicate that:1) the main factor determining PCI intensity is park area,which leads to obvious cool island effect when it exceeds 14 hm2;2) there is a negative correlation between PCI intensity and LSI,showing that the rounder the park shape is,the better the cool island effect could be achieved;3) regression analysis of humidity and PCI intensity proves that photosynthesis midday depression(PMD) is an important factor causing the low PCI intensity at 13:00;4) the multivariable linear regression model proposed here could effectively well predict the daily PCI intensity in mountain cities.展开更多
Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for...Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints.展开更多
A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. Th...A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (Rcv) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.展开更多
The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to inves...The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to investigate the relationship between meteorological parameters and mixing layer height during 2005-2009 in Changsha, China. Secondly, the multi-linear regression model between daytime and nighttime was adopted to predict the temporal ventilation coefficient. Thirdly, the validation of the model between the predicted and observed ventilation coefficient in 2010 was conducted. The results showed that ventilation coefficient significantly varied and remained high during daytime, while it stayed relatively constant and low during nighttime. In addition, the diurnal ventilation coefficient was distinctly negatively correlated with PM10 (particle with the diameter less than 10 μm) concentration in Changsha, China. The predicted ventilation coefficient agreed well with the observed values based on the multi-linear regression models during daytime and nighttime. The urban temporal ventilation coefficient could be accurately predicted by some simple meteorological parameters during daytime and nighttime. The ventilation coefficient played an important role in the PM10 concentration level.展开更多
The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal d...The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 ℃ and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.展开更多
Flash point is a primary property used to determine the fire and explosion hazards of a liquid. New group contribution-based models were presented for estimation of the flash point of alkanes by the use of multiple li...Flash point is a primary property used to determine the fire and explosion hazards of a liquid. New group contribution-based models were presented for estimation of the flash point of alkanes by the use of multiple linear regression(MLR)and artificial neural network(ANN). This simple linear model shows a low average relative deviation(AARD) of 2.8% for a data set including 50(40 for training set and 10 for validation set) flash points. Furthermore, the predictive ability of the model was evaluated using LOO cross validation. The results demonstrate ANN model is clearly superior both in fitness and in prediction performance.ANN model has only the average absolute deviation of 2.9 K and the average relative deviation of 0.72%.展开更多
文摘In this paper,we introduce the method of leaps and bounds regression which canbe used to select variables quickly and obtain the best regression models-These models con-tain one variable, two variables, three variables and so on- The results obtained by usingleaps and bounds regression were compared with those achieved by using stepwise regressionto lead to the conclusion that leaps and bounds regression is an effective method.
基金Project(2006BAJ02A02-05) supported by the National Key Technologies R&D Program of China
文摘Evaluating how park characteristics affect the formation of a park cool island(PCI) is the premise of guiding green parks planning in mountain cities.The diurnal variation of PCI intensity was achieved,and correlations between PCI intensity and park characteristics such as park area,landscape shape index(LSI),green ratio and altitude were analyzed,using 3 010 temperature and humidity data from measurements in six parks with typical park characteristics in Chongqing,China.The results indicate that:1) the main factor determining PCI intensity is park area,which leads to obvious cool island effect when it exceeds 14 hm2;2) there is a negative correlation between PCI intensity and LSI,showing that the rounder the park shape is,the better the cool island effect could be achieved;3) regression analysis of humidity and PCI intensity proves that photosynthesis midday depression(PMD) is an important factor causing the low PCI intensity at 13:00;4) the multivariable linear regression model proposed here could effectively well predict the daily PCI intensity in mountain cities.
基金Project(2009BAG15B03) supported by the National Science and Technology Ministry of ChinaProjects(51178100, 51078080) supported by the National Natural Science Foundation of China+1 种基金Project(BK2011141) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject(12KB02) supported by the Open Fund of the Key Laboratory for Safety Control of Bridge Engineering(Changsha University of Science and Technology), Ministry of Education, China
文摘Damage alarming and safety evaluation using long-term monitoring data is an area of significant research activity for long-span bridges. In order to extend the research in this field, the damage alarming technique for bridge expansion joints based on long-term monitoring data was developed. The effects of environmental factors on the expansion joint displacement were analyzed. Multiple linear regression models were obtained to describe the correlation between displacements and the dominant environmental factors. The damage alarming index was defined based on the multiple regression models. At last, the X-bar control chart was utilized to detect the abnormal change of the displacements. Analysis results reveal that temperature and traffic condition are the dominant environmental factors to influence the displacement. When the confidence level of X-bar control chart is set to be 0.003, the false-positive indications of damage can be avoided. The damage sensitivity analysis shows that the proper X-bar control chart can detect 0.1 cm damage-induced change of the expansion joint displacement. It is reasonably believed that the proposed technique is robust against false-positive indication of damage and suitable to alarm the possible future damage of the expansion joints.
基金Projects(20775010,21075011) supported by the National Natural Science Foundation of ChinaProject(2008AA05Z405) supported by the National High Technology Research and Development Program of China+2 种基金Project(09JJ3016) supported by Hunan Provincial Natural Science Foundation,ChinaProject(09C066) supported by Scientific Research Fund of Hunan Provincial Education Department,ChinaProject(2010CL01) supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,China
文摘A novel quantitative structure-property relationship (QSPR) model for estimating the solution surface tension of 92 organic compounds at 20℃ was developed based on newly introduced atom-type topological indices. The data set contained non-polar and polar liquids, and saturated and unsaturated compounds. The regression analysis shows that excellent result is obtained with multiple linear regression. The predictive power of the proposed model was discussed using the leave-one-out (LOO) cross-validated (CV) method. The correlation coefficient (R) and the leave-one-out cross-validation correlation coefficient (Rcv) of multiple linear regression model are 0.991 4 and 0.991 3, respectively. The new model gives the average absolute relative deviation of 1.81% for 92 substances. The result demonstrates that novel topological indices based on the equilibrium electro-negativity of atom and the relative bond length are useful model parameters for QSPR analysis of compounds.
基金Project(51178466) supported by the National Natural Science Foundation of ChinaProject(FANEDD200545) supported by Foundation for the Author of National Excellent Doctoral Dissertation of ChinaProject(2011JQ006) supported by Fundamental Research Funds of the Central Universities of China
文摘The temporal variation of ventilation coefficient was estimated and a simple model for the prediction of urban ventilation coefficient in Changsha was developed. Firstly, Pearson correlation analysis was used to investigate the relationship between meteorological parameters and mixing layer height during 2005-2009 in Changsha, China. Secondly, the multi-linear regression model between daytime and nighttime was adopted to predict the temporal ventilation coefficient. Thirdly, the validation of the model between the predicted and observed ventilation coefficient in 2010 was conducted. The results showed that ventilation coefficient significantly varied and remained high during daytime, while it stayed relatively constant and low during nighttime. In addition, the diurnal ventilation coefficient was distinctly negatively correlated with PM10 (particle with the diameter less than 10 μm) concentration in Changsha, China. The predicted ventilation coefficient agreed well with the observed values based on the multi-linear regression models during daytime and nighttime. The urban temporal ventilation coefficient could be accurately predicted by some simple meteorological parameters during daytime and nighttime. The ventilation coefficient played an important role in the PM10 concentration level.
基金Project(2015SK20823) supported by Science and Technology Project of Hunan Province,ChinaProject(15A001) supported by Scientific Research Fund of Hunan Provincial Education Department,China+2 种基金Project(2017CL06) supported by Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,ChinaProject(k1403029-11) supported by Science and Technology Project of Changsha City,ChinaProject(CX2015B372) supported by the Hunan Provincial Innovation Foundation for Postgraduate,China
文摘The thermal decomposition temperature is one of the most important parameters to evaluate fire hazard of organic peroxide. A quantitative structure-property relationship model was proposed for estimating the thermal decomposition temperatures of organic peroxides. The entire set of 38 organic peroxides was at random divided into a training set for model development and a prediction set for external model validation. The novel local molecular descriptors of AT1, AT2, AT3, AT4, AT5, AT6 and global molecular descriptor of ATC have been proposed in order to character organic peroxides’ molecular structures. An accurate quantitative structure-property relationship (QSPR) equation is developed for the thermal decomposition temperatures of organic peroxides. The statistical results showed that the QSPR model was obtained using the multiple linear regression (MLR) method with correlation coefficient (R), standard deviation (S), leave-one-out validation correlation coefficient (RCV) values of 0.9795, 6.5676 ℃ and 0.9328, respectively. The average absolute relative deviation (AARD) is only 3.86% for the experimental values. Model test by internal leave-one-out cross validation and external validation and molecular descriptor interpretation were discussed. Comparison with literature results demonstrated that novel local and global descriptors were useful molecular descriptors for predicting the thermal decomposition temperatures of organic peroxides.
基金Projects(21376031,21075011)supported by the National Natural Science Foundation of ChinaProject(2012GK3058)supported by the Foundation of Hunan Provincial Science and Technology Department,China+2 种基金Project supported by the Postdoctoral Science Foundation of Central South University,ChinaProject(2014CL01)supported by the Foundation of Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation,ChinaProject supported by the Innovation Experiment Program for University Students of Changsha University of Science and Technology,China
文摘Flash point is a primary property used to determine the fire and explosion hazards of a liquid. New group contribution-based models were presented for estimation of the flash point of alkanes by the use of multiple linear regression(MLR)and artificial neural network(ANN). This simple linear model shows a low average relative deviation(AARD) of 2.8% for a data set including 50(40 for training set and 10 for validation set) flash points. Furthermore, the predictive ability of the model was evaluated using LOO cross validation. The results demonstrate ANN model is clearly superior both in fitness and in prediction performance.ANN model has only the average absolute deviation of 2.9 K and the average relative deviation of 0.72%.