A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which m...A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.展开更多
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo...The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.展开更多
A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism a...A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism and neural network quantitative models for predicting compositions and rule models for expert reasoning were constructed based on statistical data and empirical knowledge. An expert reasoning method based on these models were proposed to solve blending optimization problem, including multi-objective optimization for the first blending process and area optimization for the second blending process, and to determine optimal mixture ratio which will meet the requirement of intelligent coordination. The results show that the qualified rates of agglomerate Pb, Zn and S compositions are increased by 7.1%, 6.5% and 6.9%, respectively, and the fluctuation of sintering permeability is reduced by 7.0%, which effectively stabilizes the agglomerate compositions and the permeability.展开更多
In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and r...In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.展开更多
Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed a...Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.展开更多
A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective ...A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production.展开更多
Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization mode...Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.展开更多
In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment a...In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment and load that impact generation sector, transmission sector and dispatching center in PIC were analyzed and a multi-objective coordination optimal model for new power intelligence center (NPIC) was established. To ensure the reliability and coordination of power grid and reduce investment cost, two aspects were optimized. The evolutionary algorithm was introduced to solve optimal power flow problem and the fitness function was improved to ensure the minimum cost of power generation. The gray particle swarm optimization (GPSO) algorithm was used to forecast load accurately, which can ensure the network with high reliability. On this basis, the multi-objective coordination optimal model which was more practical and in line with the need of the electricity market was proposed, then the coordination model was effectively solved through the improved particle swarm optimization algorithm, and the corresponding algorithm was obtained. The optimization of IEEE30 node system shows that the evolutionary algorithm can effectively solve the problem of optimal power flow. The average load forecasting of GPSO is 26.97 MW, which has an error of 0.34 MW compared with the actual load. The algorithm has higher forecasting accuracy. The multi-objective coordination optimal model for NPIC can effectively process the coordination and optimization problem of power network.展开更多
A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulat...A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km.展开更多
In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design...In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA & REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM.展开更多
Many sludge curing technologies often have problems like long curing time,high cost,and low efficiency in the condition of low temperature,The compressive strength,moisture content and temperature are defined as the c...Many sludge curing technologies often have problems like long curing time,high cost,and low efficiency in the condition of low temperature,The compressive strength,moisture content and temperature are defined as the constraint conditions,and solidified cost,pH,COD,NH4+-N concentration are defined as the objective functions.The response surface analysis is used to obtain a variety of response expressions of factors,and the multi-objective optimization model of fast-solidification sludge is established.Then,the curing agent formulas are optimized.After three-day conserving,the curing sludge could meet the landfill conditions.展开更多
The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetal...The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetallic mineralization,NW Iran.This work proposes a backward elimination approach(BEA)that quantitatively predicts the Au concentration from main effects(X),quadratic terms(X2)and the first order interaction(Xi×Xj)of Ag,Cu,Pb,and Zn by initialization,order reduction and validation of model.BEA is done based on the quadratic model(QM),and it was eliminated to reduced quadratic model(RQM)by removing insignificant predictors.During the QM optimization process,overall convergence trend of R2,R2(adj)and R2(pred)is obvious,corresponding to increase in the R2(pred)and decrease of R2.The RQM consisted of(threshold value,Cu,Ag×Cu,Pb×Zn,and Ag2-Pb2)and(Pb,Ag×Cu,Ag×Pb,Cu×Zn,Pb×Zn,and Ag2)as main predictors of optimized model according to288and679litho-samples in trenches and boreholes,respectively.Due to the strong genetic effects with Au mineralization,Pb,Ag2,and Ag×Pb are important predictors in boreholes RQM,while the threshold value is known as an important predictor in the trenches model.The RQMs R2(pred)equal74.90%and60.62%which are verified by R2equal to73.9%and60.9%in the trenches and boreholes validation group,respectively.展开更多
To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was establis...To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm.展开更多
To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algor...To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.展开更多
A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexib...A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexibility of links and joints was taken into account in the mechanical structure dimensions optimization and reducers selection, in which Timoshenko model was used to discretize the hollow links. Two criteria, i.e. maximization of fundamental frequency and minimization of self-mass/load ratio, were utilized to optimize the manipulators. The NSGA-II (fast elitist nondominated sorting genetic algorithms) was employed to solve the multi-objective optimization problem. How the joints flexibility affects the manipulators design was analyzed and shown in the numerical analysis example. The results indicate that simultaneous consideration of the joints and the links flexibility is very necessary for manipulators optimal design. Finally, several optimal combinations were provided. The effectiveness of the optimization method was proved by comparing with ADAMS simulation results. The self-mass/load ratio error of the two methods is within 10%. The maximum error of the natural frequency by the two methods is 23.74%. The method proposed in this work provides a fast and effective pathway for manipulator design and reducers selection.展开更多
In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters ...In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.展开更多
基金Project(2009AA04Z216) supported in part by the National High Technology Research and Development Program of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Program of ChinaProject(20092302120068) supported by the Doctoral Program of Higher Education of China
文摘A design and optimization approach of dynamic and control performance for a two-DOF planar manipulator was proposed.After the kinematic and dynamic analysis,several advantages of the mechanism were illustrated,which made it possible to obtain good dynamic and control performances just through mechanism optimization.Based on the idea of design for control(DFC),a novel kind of multi-objective optimization model was proposed.There were three optimization objectives:the index of inertia,the index describing the dynamic coupling effects and the global condition number.Other indexes to characterize the designing requirements such as the velocity of end-effector,the workspace size,and the first mode natural frequency were regarded as the constraints.The cross-section area and length of the linkages were chosen as the design variables.NSGA-II algorithm was introduced to solve this complex multi-objective optimization problem.Additional criteria from engineering experience were incorporated into the selecting of final parameters among the obtained Pareto solution sets.Finally,experiments were performed to validate the linear dynamic structure and control performances of the optimized mechanisms.A new expression for measuring the dynamic coupling degree with clear physical meaning was proposed.The results show that the optimized mechanism has an approximate decoupled dynamics structure,and each active joint can be regarded as a linear SISO system.The control performances of the linear and nonlinear controllers were also compared.It can be concluded that the optimized mechanism can achieve good control performance only using a linear controller.
基金Project(61801495)supported by the National Natural Science Foundation of China
文摘The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.
基金Project(2002CB312203) supported by the National Key Fundamental Research and Development Programof China pro-ject(60574030) supported bythe National Natural Science Foundation of China project(06FD026) supported bythe Natural Science Foun-dation of Hunan Province , China
文摘A multi-objective intelligent coordinating optimization strategy based on qualitative and quantitative synthetic model for Pb-Zn sintering blending process was proposed to obtain optimal mixture ratio. The mechanism and neural network quantitative models for predicting compositions and rule models for expert reasoning were constructed based on statistical data and empirical knowledge. An expert reasoning method based on these models were proposed to solve blending optimization problem, including multi-objective optimization for the first blending process and area optimization for the second blending process, and to determine optimal mixture ratio which will meet the requirement of intelligent coordination. The results show that the qualified rates of agglomerate Pb, Zn and S compositions are increased by 7.1%, 6.5% and 6.9%, respectively, and the fluctuation of sintering permeability is reduced by 7.0%, which effectively stabilizes the agglomerate compositions and the permeability.
基金Project(51074051)supported by the National Natural Science Foundation of ChinaProject(N110307001)supported by the Fundamental Research Funds for the Central Universities,China
文摘In terms of tandem cold mill productivity and product quality, a multi-objective optimization model of rolling schedule based on cost fimction was proposed to determine the stand reductions, inter-stand tensions and rolling speeds for a specified product. The proposed schedule optimization model consists of several single cost fi.mctions, which take rolling force, motor power, inter-stand tension and stand reduction into consideration. The cost function, which can evaluate how far the rolling parameters are from the ideal values, was minimized using the Nelder-Mead simplex method. The proposed rolling schedule optimization method has been applied successfully to the 5-stand tandem cold mill in Tangsteel, and the results from a case study show that the proposed method is superior to those based on empirical formulae.
基金Project(2009AA11Z220)supported by the National High Technology Research and Development Program of China
文摘Unmanned aerial vehicle(UAV)was introduced as a novel traffic device to collect road traffic information and its cruise route planning problem was considered.Firstly,a multi-objective optimization model was proposed aiming at minimizing the total cruise distance and the number of UAVs used,which used UAV maximum cruise distance,the number of UAVs available and time window of each monitored target as constraints.Then,a novel multi-objective evolutionary algorithm was proposed.Next,a case study with three time window scenarios was implemented.The results show that both the total cruise distance and the number of UAVs used continue to increase with the time window constraint becoming narrower.Compared with the initial optimal solutions,the optimal total cruise distance and the number of UAVs used fall by an average of 30.93% and 31.74%,respectively.Finally,some concerns using UAV to collect road traffic information were discussed.
基金Projects(50974039,50634030)supported by the National Natural Science Foundation of China
文摘A multi-objective optimization model for draft scheduling of hot strip mill was presented, rolling power minimizing, rolling force ratio distribution and good strip shape as the objective functions. A multi-objective differential evolution algorithm based on decomposition (MODE/D). The two-objective and three-objective optimization experiments were performed respectively to demonstrate the optimal solutions of trade-off. The simulation results show that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to draft scheduling. The extreme Pareto solutions are found feasible and the centres of the Pareto fronts give a good compromise. The conflict exists between each two ones of three objectives. The final optimal solution is selected from the Pareto-optimal front by the importance of objectives, and it can achieve a better performance in all objective dimensions than the empirical solutions. Finally, the practical application cases confirm the feasibility of the multi-objective approach, and the optimal solutions can gain a better rolling stability than the empirical solutions, and strip flatness decreases from (0± 63) IU to (0±45) IU in industrial production.
基金Project(2009AA11Z220)supported by National High Technology Research and Development Program of ChinaProjects(61070112,61070116)supported by the National Natural Science Foundation of China+1 种基金Project(2012LLYJTJSJ077)supported by the Ministry of Public Security of ChinaProject(KYQD14003)supported by Tianjin University of Technology and Education,China
文摘Unmanned aerial vehicle(UAV)was introduced to take road segment traffic surveillance.Considering the limited UAV maximum flight distance,UAV route planning problem was studied.First,a multi-objective optimization model of planning UAV route for road segment surveillance was proposed,which aimed to minimize UAV cruise distance and minimize the number of UAVs used.Then,an evolutionary algorithm based on Pareto optimality technique was proposed to solve multi-objective UAV route planning problem.At last,a UAV flight experiment was conducted to test UAV route planning effect,and a case with three scenarios was studied to analyze the impact of different road segment lengths on UAV route planning.The case results show that the optimized cruise distance and the number of UAVs used decrease by an average of 38.43% and 33.33%,respectively.Additionally,shortening or extending the length of road segments has different impacts on UAV route planning.
基金Project (70671039) supported by the National Natural Science Foundation of China
文摘In order to resolve the coordination and optimization of the power network planning effectively, on the basis of introducing the concept of power intelligence center (PIC), the key factor power flow, line investment and load that impact generation sector, transmission sector and dispatching center in PIC were analyzed and a multi-objective coordination optimal model for new power intelligence center (NPIC) was established. To ensure the reliability and coordination of power grid and reduce investment cost, two aspects were optimized. The evolutionary algorithm was introduced to solve optimal power flow problem and the fitness function was improved to ensure the minimum cost of power generation. The gray particle swarm optimization (GPSO) algorithm was used to forecast load accurately, which can ensure the network with high reliability. On this basis, the multi-objective coordination optimal model which was more practical and in line with the need of the electricity market was proposed, then the coordination model was effectively solved through the improved particle swarm optimization algorithm, and the corresponding algorithm was obtained. The optimization of IEEE30 node system shows that the evolutionary algorithm can effectively solve the problem of optimal power flow. The average load forecasting of GPSO is 26.97 MW, which has an error of 0.34 MW compared with the actual load. The algorithm has higher forecasting accuracy. The multi-objective coordination optimal model for NPIC can effectively process the coordination and optimization problem of power network.
基金Projects(50974039,50634030) supported by the National Natural Science Foundation of China
文摘A simulation-based multi-objective optimization approach for roll shifting strategy in hot strip mills was presented. Firstly, the effect of roll shifting strategy on wear contour was investigated by mtmerical simulation, and two evaluation indexes including edge smoothness and body smoothness of wear contours were introduced. Secondly, the edge smoothness average and body smoothness average of all the strips in a rolling campaign were selected as objective functions, and shifting control parameters as decision variables, the multi-objective method of MODE/D as the optimizer, and then a simulation-based multi-objective optimization model for roll shifting strategy was built. The experimental result shows that MODE/D can obtain a good Pareto-optimal front, which suggests a series of alternative solutions to roll shifting strategy. Moreover, the conflicting relationship between two objectives can also be found, which indicates another advantage of multi-objective optimization. Finally, industrial test confirms the feasibility of the multi-objective approach for roll shifting strategy, and it can improve strip profile and extend same width rolling miles of a rolling campaign from 35 km to 70 km.
基金Project(U1334208)supported by the National Natural Science Foundation of ChinaProject(2013GK2001)supported by the Fund of Hunan Provincial Science and Technology Department,China
文摘In order to optimize the crashworthy characteristic of energy-absorbing structures, the surrogate models of specific energy absorption (SEA) and ratio of SEA to initial peak force (REAF) with respect to the design parameters were respectively constructed based on surrogate model optimization methods (polynomial response surface method (PRSM) and Kriging method (KM)). Firstly, the sample data were prepared through the design of experiment (DOE). Then, the test data models were set up based on the theory of surrogate model, and the data samples were trained to obtain the response relationship between the SEA & REAF and design parameters. At last, the structure optimal parameters were obtained by visual analysis and genetic algorithm (GA). The results indicate that the KM, where the local interpolation method is used in Gauss correlation function, has the highest fitting accuracy and the structure optimal parameters are obtained as: the SEA of 29.8558 kJ/kg (corresponding toa=70 mm andt= 3.5 mm) and REAF of 0.2896 (corresponding toa=70 mm andt=1.9615 mm). The basis function of the quartic PRSM with higher order than that of the quadratic PRSM, and the mutual influence of the design variables are considered, so the fitting accuracy of the quartic PRSM is higher than that of the quadratic PRSM.
基金Project(2009ZX07315-005) supported by the National Water Pollution Controlled and Treatment Great Special Fund of China
文摘Many sludge curing technologies often have problems like long curing time,high cost,and low efficiency in the condition of low temperature,The compressive strength,moisture content and temperature are defined as the constraint conditions,and solidified cost,pH,COD,NH4+-N concentration are defined as the objective functions.The response surface analysis is used to obtain a variety of response expressions of factors,and the multi-objective optimization model of fast-solidification sludge is established.Then,the curing agent formulas are optimized.After three-day conserving,the curing sludge could meet the landfill conditions.
基金support of the IMIDRO(Iranian Mines and Mining Industries Development & Renovation Organization) for our research
文摘The correspondence analysis will describe elemental association accompanying an indicator samples.This analysis indicates strong mineralization of Ag,As,Pb,Te,Mo,Au,Zn and to a lesser extent S,W,Cu at Glojeh polymetallic mineralization,NW Iran.This work proposes a backward elimination approach(BEA)that quantitatively predicts the Au concentration from main effects(X),quadratic terms(X2)and the first order interaction(Xi×Xj)of Ag,Cu,Pb,and Zn by initialization,order reduction and validation of model.BEA is done based on the quadratic model(QM),and it was eliminated to reduced quadratic model(RQM)by removing insignificant predictors.During the QM optimization process,overall convergence trend of R2,R2(adj)and R2(pred)is obvious,corresponding to increase in the R2(pred)and decrease of R2.The RQM consisted of(threshold value,Cu,Ag×Cu,Pb×Zn,and Ag2-Pb2)and(Pb,Ag×Cu,Ag×Pb,Cu×Zn,Pb×Zn,and Ag2)as main predictors of optimized model according to288and679litho-samples in trenches and boreholes,respectively.Due to the strong genetic effects with Au mineralization,Pb,Ag2,and Ag×Pb are important predictors in boreholes RQM,while the threshold value is known as an important predictor in the trenches model.The RQMs R2(pred)equal74.90%and60.62%which are verified by R2equal to73.9%and60.9%in the trenches and boreholes validation group,respectively.
基金Project(2012B091100444)supported by the Production,Education and Research Cooperative Program of Guangdong Province and Ministry of Education,ChinaProject(2013ZM0091)supported by Fundamental Research Funds for the Central Universities of China
文摘To cope with the task scheduling problem under multi-task and transportation consideration in large-scale service oriented manufacturing systems(SOMS), a service allocation optimization mathematical model was established, and then a hybrid discrete particle swarm optimization-genetic algorithm(HDPSOGA) was proposed. In SOMS, each resource involved in the whole life cycle of a product, whether it is provided by a piece of software or a hardware device, is encapsulated into a service. So, the transportation during production of a task should be taken into account because the hard-services selected are possibly provided by various providers in different areas. In the service allocation optimization mathematical model, multi-task and transportation were considered simultaneously. In the proposed HDPSOGA algorithm, integer coding method was applied to establish the mapping between the particle location matrix and the service allocation scheme. The position updating process was performed according to the cognition part, the social part, and the previous velocity and position while introducing the crossover and mutation idea of genetic algorithm to fit the discrete space. Finally, related simulation experiments were carried out to compare with other two previous algorithms. The results indicate the effectiveness and efficiency of the proposed hybrid algorithm.
基金Project(ADLT 930-809R)supported by the Alabama Department of Transportation,USA
文摘To determine the onset and duration of contraflow evacuation, a multi-objective optimization(MOO) model is proposed to explicitly consider both the total system evacuation time and the operation cost. A solution algorithm that enhances the popular evolutionary algorithm NSGA-II is proposed to solve the model. The algorithm incorporates preliminary results as prior information and includes a meta-model as an alternative to evaluation by simulation. Numerical analysis of a case study suggests that the proposed formulation and solution algorithm are valid, and the enhanced NSGA-II outperforms the original algorithm in both convergence to the true Pareto-optimal set and solution diversity.
基金Project(2009AA04Z216) supported by the National High-Tech Research and Development Program (863 Program) of ChinaProject(2009ZX04013-011) supported by the National Science and Technology Major Project of ChinaProject supported by the HIT Oversea Talents Introduction Program,China
文摘A geometrical parameters optimization and reducers selection method was proposed for robotic manipulators design. The Lagrangian approach was employed in deriving the dynamic model of a two-DOF manipulator. The flexibility of links and joints was taken into account in the mechanical structure dimensions optimization and reducers selection, in which Timoshenko model was used to discretize the hollow links. Two criteria, i.e. maximization of fundamental frequency and minimization of self-mass/load ratio, were utilized to optimize the manipulators. The NSGA-II (fast elitist nondominated sorting genetic algorithms) was employed to solve the multi-objective optimization problem. How the joints flexibility affects the manipulators design was analyzed and shown in the numerical analysis example. The results indicate that simultaneous consideration of the joints and the links flexibility is very necessary for manipulators optimal design. Finally, several optimal combinations were provided. The effectiveness of the optimization method was proved by comparing with ADAMS simulation results. The self-mass/load ratio error of the two methods is within 10%. The maximum error of the natural frequency by the two methods is 23.74%. The method proposed in this work provides a fast and effective pathway for manipulator design and reducers selection.
基金Project(51074180) supported by the National Natural Science Foundation of ChinaProject(2012AA041801) supported by the National High Technology Research and Development Program of China+2 种基金Project(2007CB714002) supported by the National Basic Research Program of ChinaProject(2013GK3003) supported by the Technology Support Plan of Hunan Province,ChinaProject(2010FJ1002) supported by Hunan Science and Technology Major Program,China
文摘In order to improve the strength and stiffness of shield cutterhead, the method of fuzzy mathematics theory in combination with the finite element analysis is adopted. An optimal design model of structural parameters for shield cutterhead is formulated,based on the complex engineering technical requirements. In the model, as the objective function of the model is a composite function of the strength and stiffness, the response surface method is applied to formulate the approximate function of objective function in order to reduce the solution scale of optimal problem. A multi-objective genetic algorithm is used to solve the cutterhead structure design problem and the change rule of the stress-strain with various structural parameters as well as their optimal values were researched under specific geological conditions. The results show that compared with original cutterhead structure scheme, the obtained optimal scheme of the cutterhead structure can greatly improve the strength and stiffness of the cutterhead, which can be seen from the reduction of its maximum equivalent stress by 21.2%, that of its maximum deformation by 0.75%, and that of its mass by 1.04%.