期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
基于多核最大均值差异迁移学习的WLAN室内入侵检测方法 被引量:5
1
作者 周牧 李垚鲆 +2 位作者 谢良波 蒲巧林 田增山 《电子与信息学报》 EI CSCD 北大核心 2020年第5期1149-1157,共9页
无线局域网(WLAN)室内入侵检测技术是目前智能检测领域的研究热点之一,而传统基于数据库构建的入侵检测技术没有考虑复杂室内环境中WLAN信号的时变性,从而导致WLAN室内入侵检测系统的鲁棒性较差。为了解决这一问题,该文提出一种基于多... 无线局域网(WLAN)室内入侵检测技术是目前智能检测领域的研究热点之一,而传统基于数据库构建的入侵检测技术没有考虑复杂室内环境中WLAN信号的时变性,从而导致WLAN室内入侵检测系统的鲁棒性较差。为了解决这一问题,该文提出一种基于多核最大均值差异(MKMMD)迁移学习的WLAN室内入侵检测方法。该方法首先利用离线有标记和在线伪标记的接收信号强度(RSS)特征来分别构建源域和目标域;其次,通过构造最优迁移矩阵以最小化源域和目标域RSS特征混合分布之间的MKMMD;再次,利用迁移后的源域RSS特征与对应标签来训练分类器,并将其用于对迁移后的目标域RSS特征进行分类以得到目标域标签集;最后,迭代更新目标域标签集直至算法收敛,进而实现对目标环境的入侵检测。实验结果表明,该文所提方法在保证较高检测精度的同时,能够有效克服信号时变性对检测性能的影响。 展开更多
关键词 室内入侵检测 多核最大均值差异 迁移学习 最优迁移矩阵 无线局域网
在线阅读 下载PDF
基于软联合最大均值差异的域自适应齿轮箱故障诊断 被引量:2
2
作者 张彦民 《机械设计与制造》 北大核心 2023年第10期50-58,64,共10页
为了解决源域和目标域之间存在联合分布差异,提出了一种基于软连接最大均值差异的域自适应齿轮箱故障诊断方法。首先提出了一种域自适应Y网模型,用于提取跨源域和目标域的域不变深度特征,解决域自适应问题。然后通过软联合最大均值差异... 为了解决源域和目标域之间存在联合分布差异,提出了一种基于软连接最大均值差异的域自适应齿轮箱故障诊断方法。首先提出了一种域自适应Y网模型,用于提取跨源域和目标域的域不变深度特征,解决域自适应问题。然后通过软联合最大均值差异来驱动传输过程,从而模拟源域和目标域之间的分布差异。进一步引入SE-RES模块,增强了稀疏特征提取的双连接卷积流水线,并提出了一种考虑类权重偏差的软联合最大均值差异度量。最后通过两个行星齿轮箱数据集进行实验验证,结果证明提出的方法实现了不同行星齿轮箱在不同工况下的域自适应故障诊断。 展开更多
关键词 行星齿轮箱 域自适应 联合最大均值差异 故障诊断
在线阅读 下载PDF
基于最大均值差异测度的装配体相似性研究 被引量:1
3
作者 张鵾 魏树国 +2 位作者 周妍 疏淑丽 李博 《机电工程》 CAS 北大核心 2023年第6期867-874,共8页
基于距离的装配体相似性度量方法由于忽略了对距离分布的分析,在其案例初筛过程中,采用该方法时易导致丢失部分相似的案例。针对这一问题,提出了一种基于最大均值差异(MMD)的装配体相似性度量方法。首先,利用装配体中零部件数量及零部... 基于距离的装配体相似性度量方法由于忽略了对距离分布的分析,在其案例初筛过程中,采用该方法时易导致丢失部分相似的案例。针对这一问题,提出了一种基于最大均值差异(MMD)的装配体相似性度量方法。首先,利用装配体中零部件数量及零部件类型数量、连接数量及连接类型数量,共4个参数,将装配体模型化为一维数据集合;然后,使用最大均值差异(MMD)算法,将表示装配体模型的一维数组映射到再生核希尔伯特空间(RKHS),在该空间内计算出装配体间的距离,并利用离散系数对距离进行了统计学分析;最后,通过基于实例的实验和基于装配体参数生成规则的仿真比较实验对其进行了验证。实验及研究结果表明:在准确度上,MMD算法与欧氏距离(ED)和加权距离(WD)算法一致;在鲁棒性上,无论进行相似性分析的两装配体零部件数量是否一致,该方法的距离分布在零部件数量超过6个后即可达到基本稳定,最高离散系数约为WD算法的23%,距离分布的鲁棒性有了较大程度的增强。 展开更多
关键词 装配体模型 装配体相似性 再生希尔伯特空间 最大均值差异 欧氏距离 加权距离 离散系数
在线阅读 下载PDF
基于改进迁移学习的煤矿井下设备音频信号故障诊断方法 被引量:1
4
作者 邱吉尔 王琪 王鹏 《工矿自动化》 北大核心 2025年第2期91-99,共9页
煤矿井下生产运行环境恶劣,其关键设备如瓦斯泵、通风机、采煤机等长期处于启动状态,易产生缺陷性故障。目前端到端音频数据故障诊断方法的模型训练与更新高度依赖于数据标注,尽管可以获取海量原始数据,但这些数据通常未经标注,难以直... 煤矿井下生产运行环境恶劣,其关键设备如瓦斯泵、通风机、采煤机等长期处于启动状态,易产生缺陷性故障。目前端到端音频数据故障诊断方法的模型训练与更新高度依赖于数据标注,尽管可以获取海量原始数据,但这些数据通常未经标注,难以直接用于模型训练,设备运行工况的突变和设备重组等因素可能导致数据分布发生变化,从而引起模型性能下降。针对上述问题,提出了一种基于改进迁移学习的煤矿井下设备音频信号故障诊断方法。首先,对煤矿设备音频信号进行梅尔频率倒谱系数(MFCC)特征提取,捕捉设备运行状态中的关键信息,得到故障特征二维系数图。然后,构建基于改进迁移学习的故障诊断网络模型,以改进最大均值差异,即多核联合最大均值差异作为度量标准,借助伪标签计算联合分布距离,将标签信息通过多重线性映射进行特征匹配,以减少数据分布差异,实现边缘分布和条件分布同时对齐。实验结果表明:所提方法在无标签条件下能够实现高精度的故障诊断,准确率达到96.99%,标准差为0.014;在模型抗噪性能实验中,基于改进迁移学习的故障诊断模型在低信噪比(如10 dB)条件下仍能保持80%的故障诊断准确率,展现出较强的抗噪鲁棒性。 展开更多
关键词 煤矿井下设备 音频信号 故障诊断 迁移学习 梅尔频率倒谱系数 MFCC 最大均值差异 多核联合最大均值差异 源域 目标域
在线阅读 下载PDF
结合差异控制的FCM方法在MR图像分割中的应用 被引量:5
5
作者 王娜 郭敏 《计算机工程与应用》 CSCD 北大核心 2009年第34期212-214,共3页
应用模糊核聚类产生的聚类中心作为FCM方法的初始聚类中心,同时引入差异控制函数对考虑了空间信息的FCM方法的隶属函数进行修正,加入差异控制函数的隶属函数将边缘区域、面积较小区域、噪声与区域内部点区别对待,提高了分割的正确性。... 应用模糊核聚类产生的聚类中心作为FCM方法的初始聚类中心,同时引入差异控制函数对考虑了空间信息的FCM方法的隶属函数进行修正,加入差异控制函数的隶属函数将边缘区域、面积较小区域、噪声与区域内部点区别对待,提高了分割的正确性。实验结果表明:对加入噪声的MR图像应用该文方法分割,得到的结果相对于标准FCM方法以及加入空间信息的FCM方法具有更好的正确性和分割结果的完整性,同时算法的迭代次数也极大减少了。 展开更多
关键词 模糊C均值聚类 模糊聚类 MR图像 图像分割 差异控制函数
在线阅读 下载PDF
变工况轴承的联合分布适应迁移故障诊断 被引量:16
6
作者 刘应东 刘韬 +1 位作者 李华 王廷轩 《电子测量与仪器学报》 CSCD 北大核心 2021年第5期69-75,共7页
针对传统的机器学习算法在变工况条件下的轴承故障分类中诊断率低的问题,提出了基于联合分布适应(JDA)算法与K-最近邻(KNN)分类算法相结合的轴承故障诊断方法。首先该方法通过提取不同工况下的轴承故障信号的时域特征分别作为源域样本... 针对传统的机器学习算法在变工况条件下的轴承故障分类中诊断率低的问题,提出了基于联合分布适应(JDA)算法与K-最近邻(KNN)分类算法相结合的轴承故障诊断方法。首先该方法通过提取不同工况下的轴承故障信号的时域特征分别作为源域样本和目标域样本,并通过Fisher线性判别分析(FLDA)方法计算各个特征所占权重。然后将权重较大的特征组成的特征向量通过JDA方法进行联合分布适配,即通过核函数将源域样本和目标域样本映射到低维潜在空间,以最大均值差异(MMD)距离为度量标准,同时减小源域和目标域样本的边缘分布和条件分布差异。最后将适配完的源域和目标域样本分别作为训练集和测试集,通过KNN分类器进行模式识别,最终实现在变工况条件下的轴承故障诊断分类。通过仿真分析和实验验证,所用方法相较于主成分分析(PCA)、核主成分分析(KPCA)传统机器学习方法以及TCA迁移学习方法,显著提高了变工况条件下的轴承故障诊断精度。 展开更多
关键词 联合分布适应 变工况 迁移学习 故障诊断 最大均值差异
在线阅读 下载PDF
核双样检验的连杆摆动光流轨迹混叠去除及补偿
7
作者 郑思凡 陈平平 +2 位作者 苏凯雄 吴永春 林志坚 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第7期182-193,共12页
在连杆摆动视觉测量中,针对高速曝光产生的背景噪点对前景光流轨迹混叠及阻断导致配准误差,本文提出了一种新的视频滤波与补偿算法。该算法以背景噪声与前景摆杆光流轨迹不同的运动统计特性作为先验模型,通过核双样假设检验检测光流轨... 在连杆摆动视觉测量中,针对高速曝光产生的背景噪点对前景光流轨迹混叠及阻断导致配准误差,本文提出了一种新的视频滤波与补偿算法。该算法以背景噪声与前景摆杆光流轨迹不同的运动统计特性作为先验模型,通过核双样假设检验检测光流轨迹速度突变,剪除背景噪点轨迹片段实现去噪。为实现轨迹补偿,首先引入机械连杆铰接点为参照物的相对光流采集方式,将各帧摆杆铰接点配准翘曲至第1帧铰接点位置,将连杆摆动轨迹从复合高阶摆线中分离形成低阶理想圆弧。其次采用Pratt拟合翘曲后的摆杆轨迹的圆心与半径,将轨迹聚类为不同半径的弧状轨迹群。最后,将弧状轨迹群的x-y坐标ν-SVR回归作为几何约束,结合x-t动力学回归半监督学习出完整长度的轨迹。在刮刷总成摆角及共轭凸轮的针床推程位移比较的测量实验表明,该算法比传统VBM3D,MeshFlow等算法准确度可提高3.26%,运算复杂度降低2阶,在机械旋转运动视觉故障诊断及机械仪表数字化采集等方面具有广阔应用前景。 展开更多
关键词 连杆曲线图谱 BEBLID描述子 最大均值差异 RKHS再生 密度功率散度 双样检验
在线阅读 下载PDF
基于改进多尺度卷积循环神经网络的滚动轴承故障研究 被引量:2
8
作者 董绍江 黄翔 +1 位作者 夏宗佑 邹松 《振动与冲击》 EI CSCD 北大核心 2024年第20期94-105,共12页
针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memo... 针对传统卷积神经网络故障诊断方法提取特征不丰富,容易丢失故障敏感信息,且在单一尺度处理方法限制实际复杂工况下故障特性的深度挖掘问题,提出了注意力机制的多尺度卷积神经网络和双向长短期记忆(bi-directional long short-term memory,BiLSTM)网络融合的迁移学习故障诊断方法。该方法首先应用不同尺寸池化层和卷积核捕获振动信号的多尺度特征;然后引入多头自注意力机制自动地给予特征序列中的不同部分不同的权重,进一步加强特征表示的能力;其次利用BiLSTM结构引入双向性质提取特征前后之间的内部关系实现信息的逐层传递;最后利用多核最大均值差异减小源域和目标域在预训练模型中各层上的概率分布差异并利用少量标记的目标域数据再对模型进行训练。试验结果表明,所提方法在江南大学(JNU)、德国帕德博恩大学(PU)公开轴承数据集上平均准确率分别为98.43%和97.66%,该方法在重庆长江轴承股份有限公司自制的轴承故障数据集上也表现出了极高的准确率和较快的收敛速度,为有效诊断振动旋转部件故障提供了实际依据。 展开更多
关键词 故障诊断 多尺度卷积神经网络 双向长短期记忆(BiLSTM)网络 多头自注意力 多核最大均值差异
在线阅读 下载PDF
云边协同下基于深度迁移网络的配电台区异常工况诊断方法 被引量:6
9
作者 范敏 孟鑫余 +2 位作者 夏嘉璐 刘志宏 张可 《电机与控制学报》 EI CSCD 北大核心 2023年第1期128-138,共11页
为了实现配电台区异常工况精细化诊断,提出云边协同下基于深度迁移网络的配电台区异常工况诊断方法。首先,在云中心对多个相似配电台区的异常工况样本进行汇集,利用精细化的运行工况样本集训练构建源域异常工况诊断的卷积神经网络模型... 为了实现配电台区异常工况精细化诊断,提出云边协同下基于深度迁移网络的配电台区异常工况诊断方法。首先,在云中心对多个相似配电台区的异常工况样本进行汇集,利用精细化的运行工况样本集训练构建源域异常工况诊断的卷积神经网络模型。其次,将源域诊断模型迁移至目标域的单一配电台区边缘节点处,利用迁移机制进行目标域上的差异性训练,引入多核最大均值差异来计算源域与目标域的分布差异,构建目标域优化损失函数,使目标域与源域自适应匹配,从而有效建立目标域异常工况诊断模型。通过实验验证所提方法具有良好的异常工况精细化诊断能力,诊断性能明显优于其他常规方法。同时,该方法能减缓云中心集中训练诊断模型的计算资源需求压力,有效利用边缘节点的计算能力和响应能力。 展开更多
关键词 配电台区 异常工况诊断 云边协同 卷积神经网络 深度迁移学习 多核最大均值差异
在线阅读 下载PDF
基于生成对抗网络的无监督域适应分类模型 被引量:9
10
作者 王格格 郭涛 +1 位作者 余游 苏菡 《电子学报》 EI CAS CSCD 北大核心 2020年第6期1190-1197,共8页
生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsu... 生成适应模型利用生成对抗网络实现模型结构,并在领域适应学习上取得了突破.但其部分网络结构缺少信息交互,且仅使用对抗学习不足以完全减小域间距离,从而使分类精度受到影响.为此,提出一种基于生成对抗网络的无监督域适应分类模型(Unsupervised Domain Adaptation classification model based on GAN,UDAG).该模型通过联合使用生成对抗网络和多核最大均值差异度量准则优化域间差异,并充分利用无监督对抗训练及监督分类训练之间的信息传递以学习源域分布和目标域分布之间的共享特征.通过在四种域适应情况下的实验结果表明,UDAG模型学习到更优的共享特征嵌入并实现了域适应图像分类,且分类精度有明显提高. 展开更多
关键词 生成适应模型 迁移学习 领域适应学习 生成对抗网络 多核最大均值差异 无监督学习
在线阅读 下载PDF
基于迁移堆栈自编码器的轴承故障诊断方法 被引量:11
11
作者 贾美霞 韩宝坤 +3 位作者 王金瑞 张骁 郭雷 赵伟涛 《噪声与振动控制》 CSCD 北大核心 2021年第6期84-89,125,共7页
近年来,基于数据驱动的设备智能故障诊断方法是监测设备健康状况的重要手段,然而在实际中不同工况下含标注的监测数据严重缺乏,导致智能故障诊断的模型难以有效构建。提出一种基于迁移堆栈自编码器的轴承故障诊断方法,能成功解决不同工... 近年来,基于数据驱动的设备智能故障诊断方法是监测设备健康状况的重要手段,然而在实际中不同工况下含标注的监测数据严重缺乏,导致智能故障诊断的模型难以有效构建。提出一种基于迁移堆栈自编码器的轴承故障诊断方法,能成功解决不同工况下轴承故障智能诊断的问题。首先,将不同工况下轴承原始振动信号数据进行快速傅里叶变换转化成频域信号,得到带标签的源域和不带标签的目标域数据集。其次,使用基于堆栈自编码器的多分类网络结构对源域数据进行特征提取,为防止过拟合加入Dropout层和批标准化层,从而有效提高特征的提取。最后,利用多核最大均值差异作为评价源域和目标域的距离指标,实现域不变特征提取并进行迁移学习。将该方法用于不同工况下滚动轴承的数据集进行验证,结果表明目标域样本充足时轴承故障诊断分类准确率能够达到99.4%,目标域样本为源域样本5%时其分类准确率能达到95.2%,具有较好的应用前景。 展开更多
关键词 故障诊断 迁移学习 堆栈自编码器 多核最大均值差异 滚动轴承
在线阅读 下载PDF
融合迁移卷积神经网络的跨域滚动轴承故障诊断 被引量:12
12
作者 王廷轩 刘韬 +1 位作者 王振亚 刘应东 《电子测量技术》 北大核心 2021年第10期167-174,共8页
为了解决传统的机器学习算法在不同工况下跨平台的滚动轴承故障诊断中容错率和诊断精度低的问题,提出了基于连续小波变换(CWT)算法与迁移学习(TL)算法相融合的滚动轴承故障诊断方法。该方法通过提取不同工况下跨平台的滚动轴承故障时域... 为了解决传统的机器学习算法在不同工况下跨平台的滚动轴承故障诊断中容错率和诊断精度低的问题,提出了基于连续小波变换(CWT)算法与迁移学习(TL)算法相融合的滚动轴承故障诊断方法。该方法通过提取不同工况下跨平台的滚动轴承故障时域信号分别作为源域样本和目标域样本,并通过CWT算法将振动信号转化为二维信号。其次将故障信号通过核函数将源域样本和目标域样本映射到再生希尔伯特空间,以多核最大均值差异(MK-MMD)距离为度量标准,优化迁移过程的卷积神经网络(CNN)的损失函数,减小迁移后源域样本和目标域样本的分布差异。最后将适配的源域和目标域样本通过CNN模型进行模式识别,实现不同工况下跨平台的滚动轴承故障迁移诊断。经过实验验证,本文所提方法相较于其他方法,显著提高了不同工况下跨平台的滚动轴承故障诊断精度和鲁棒性。 展开更多
关键词 不同工况 卷积神经网络 跨平台迁移学习 故障诊断 多核最大均值差异
在线阅读 下载PDF
基于深度特征选取的旋转机械跨域故障诊断 被引量:6
13
作者 何财林 费国华 +2 位作者 朱坚 董飞 宋俊材 《机电工程》 CAS 北大核心 2022年第10期1345-1355,共11页
在实际的工业场景中,对旋转机械进行故障诊断时,存在着标签故障样本不足和数据分布差异的问题,为此,基于深度特征选取和迁移学习方法,提出了一种新的跨域故障诊断方法。首先,利用深度自编码器进行了深度特征提取,利用不同激活函数下的... 在实际的工业场景中,对旋转机械进行故障诊断时,存在着标签故障样本不足和数据分布差异的问题,为此,基于深度特征选取和迁移学习方法,提出了一种新的跨域故障诊断方法。首先,利用深度自编码器进行了深度特征提取,利用不同激活函数下的深度自编码器提取出的深度特征,构建了深度特征池;然后,采用提出的面向跨域诊断的特征选取方法,选取了可迁移特征用于后续的特征迁移学习,利用所提出的改进联合分布适应方法,降低了源域和目标域特征数据间分布差异;最后,基于经迁移学习后的有标签源域样本和无标签目标域样本,对故障识别分类器进行了训练,并利用机械故障模拟实验台的轴承和电机故障数据,开展了旋转机械跨域故障诊断的实验。研究结果表明:与对比模型相比,所提出的方法能够取得更优秀的跨域故障诊断性能;在选取合适的特征数时,其最大故障诊断准确率明显高于其他对比模型(其中,轴承为95.42%,电机为88.67%)。 展开更多
关键词 转动机件 标签故障样本不足 深度特征选取 联合分布适应 多核最大均值差异 迁移学习方法 深度自编码器
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部