在多核结构中,获得并行应用线程的安全、精确的最坏情况执行时间(worst case execution time,WCET)的最大挑战之一在于共享资源的竞争冲突检测.在共享Cache的多核处理器中,线程在共享Cache中的指令可能被其他并行线程的指令替换,从而导...在多核结构中,获得并行应用线程的安全、精确的最坏情况执行时间(worst case execution time,WCET)的最大挑战之一在于共享资源的竞争冲突检测.在共享Cache的多核处理器中,线程在共享Cache中的指令可能被其他并行线程的指令替换,从而导致了线程间在共享Cache上的干扰,因此多核结构下线程WCET需要考虑并行线程间在共享Cache上的干扰.在现有的简单地址映射干扰分析基础上,考虑了指令取指执行时序因素对干扰的影响,提出了非干扰状态的充分不必要条件,根据指令的取指执行时序范畴判断线程在共享Cache上的干扰状态.通过排除非干扰状态,可以进一步精确多核结构中线程的WCET估值.理论分析证明了该方法的有效性.实验结果表明,与当前现有的考虑执行周期和基于逻辑访问先后顺序的方法相比,基于时序方法下的WCET估值分别可以提高12%和7%的精确度.展开更多
文摘嵌入式多核结构的共享资源冲突是硬实时任务最差情况执行时间(worst-case execution time,WCET)估算的难点,而且通过减少共享资源冲突延迟的估算可以减少硬实时任务的WCET估算值,提高硬实时任务的可调度性。针对带有冲突感知总线(interference-aware bus arbiter,IABA)的嵌入式多核结构,提出了一种基于bank-column缓存划分的访存请求冲突延迟上限优化方法,根据bank冲突次数和冲突延迟上限的关系,该方法通过优化bank到核映射来减少bank冲突发生次数,从而减小冲突延迟上限和WCET估算值。实验结果表明,与现有冲突延迟上限界定方法相比,提出的方法能减少约29%的WCET估算值。
文摘在多核结构中,获得并行应用线程的安全、精确的最坏情况执行时间(worst case execution time,WCET)的最大挑战之一在于共享资源的竞争冲突检测.在共享Cache的多核处理器中,线程在共享Cache中的指令可能被其他并行线程的指令替换,从而导致了线程间在共享Cache上的干扰,因此多核结构下线程WCET需要考虑并行线程间在共享Cache上的干扰.在现有的简单地址映射干扰分析基础上,考虑了指令取指执行时序因素对干扰的影响,提出了非干扰状态的充分不必要条件,根据指令的取指执行时序范畴判断线程在共享Cache上的干扰状态.通过排除非干扰状态,可以进一步精确多核结构中线程的WCET估值.理论分析证明了该方法的有效性.实验结果表明,与当前现有的考虑执行周期和基于逻辑访问先后顺序的方法相比,基于时序方法下的WCET估值分别可以提高12%和7%的精确度.