期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
多核支持向量数据描述分类方法研究 被引量:9
1
作者 卢明 刘黎辉 吴亮红 《计算机工程与应用》 CSCD 北大核心 2016年第18期68-73,共6页
核函数、惩罚因子、核参数是影响支持向量数据描述(SVDD)分类方法分类效果的重要因素。研究了多核支持向量数据描述(MKSVDD)分类方法,给出了多核支持向量数据描述分类方法的实现步骤,基于banana数据集分析了惩罚因子和核参数对分类效果... 核函数、惩罚因子、核参数是影响支持向量数据描述(SVDD)分类方法分类效果的重要因素。研究了多核支持向量数据描述(MKSVDD)分类方法,给出了多核支持向量数据描述分类方法的实现步骤,基于banana数据集分析了惩罚因子和核参数对分类效果的影响,重点讨论了多核函数的权值对支持向量数据描述边界分布的影响。仿真实验结果表明,与单核支持向量数据描述分类方法相比较,多核支持向量数据描述分类方法的分类效果更佳,为实际应用时参数的选择提供了参考。 展开更多
关键词 模式识别 支持向量数据描述 多核方法 最优超球半径 参数选择
在线阅读 下载PDF
通用稀疏多核学习 被引量:3
2
作者 张仁峰 吴小俊 陈素根 《计算机应用研究》 CSCD 北大核心 2016年第1期21-27,共7页
针对L_1范数多核学习方法产生核权重的稀疏解时可能会导致有用信息的丢失和泛化性能退化、L_p范数多核学习方法产生核权重的非稀疏解时会产生很多冗余信息并对噪声敏感,提出了一种通用稀疏多核学习方法。该算法是基于L__1范数和L_p范数(... 针对L_1范数多核学习方法产生核权重的稀疏解时可能会导致有用信息的丢失和泛化性能退化、L_p范数多核学习方法产生核权重的非稀疏解时会产生很多冗余信息并对噪声敏感,提出了一种通用稀疏多核学习方法。该算法是基于L__1范数和L_p范数(p>1)混合的网状正则化多核学习方法,不仅能灵活地调整稀疏性,而且鼓励核权重的组效应,L_1范数和L_p范数多核学习方法可以认为是该方法的特例。该方法引进的混合约束为非线性约束,对此约束采用二阶泰勒展开式近似,并使用半无限规划来求解该优化问题。实验结果表明,改进后的方法在动态调整稀疏性的前提下能获得较好的分类性能,同时也支持组效应,从而验证了改进后的方法是有效可行的。 展开更多
关键词 多核学习方法 稀疏性 组效应 分类
在线阅读 下载PDF
Using multi-threads to hide deduplication I/O latency with low synchronization overhead 被引量:1
3
作者 朱锐 秦磊华 +1 位作者 周敬利 郑寰 《Journal of Central South University》 SCIE EI CAS 2013年第6期1582-1591,共10页
Data deduplication, as a compression method, has been widely used in most backup systems to improve bandwidth and space efficiency. As data exploded to be backed up, two main challenges in data deduplication are the C... Data deduplication, as a compression method, has been widely used in most backup systems to improve bandwidth and space efficiency. As data exploded to be backed up, two main challenges in data deduplication are the CPU-intensive chunking and hashing works and the I/0 intensive disk-index access latency. However, CPU-intensive works have been vastly parallelized and speeded up by multi-core and many-core processors; the I/0 latency is likely becoming the bottleneck in data deduplication. To alleviate the challenge of I/0 latency in multi-core systems, multi-threaded deduplication (Multi-Dedup) architecture was proposed. The main idea of Multi-Dedup was using parallel deduplication threads to hide the I/0 latency. A prefix based concurrent index was designed to maintain the internal consistency of the deduplication index with low synchronization overhead. On the other hand, a collisionless cache array was also designed to preserve locality and similarity within the parallel threads. In various real-world datasets experiments, Multi-Dedup achieves 3-5 times performance improvements incorporating with locality-based ChunkStash and local-similarity based SiLo methods. In addition, Multi-Dedup has dramatically decreased the synchronization overhead and achieves 1.5-2 times performance improvements comparing to traditional lock-based synchronization methods. 展开更多
关键词 MULTI-THREAD MULTI-CORE parallel data deduplication
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部