期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进高斯过程回归模型的短期负荷区间预测 被引量:38
1
作者 宗文婷 卫志农 +3 位作者 孙国强 李慧杰 CHEUNG Kwok W 孙永辉 《电力系统及其自动化学报》 CSCD 北大核心 2017年第8期22-28,共7页
考虑到电力系统短期负荷预测的精度直接影响电网运行的经济性和安全性,而传统点预测方法不能计及电网运行中的众多不确定性因素,提出一种基于改进高斯过程回归的短期负荷区间预测方法。采用模糊C-均值聚类算法从历史数据中寻找相似日,... 考虑到电力系统短期负荷预测的精度直接影响电网运行的经济性和安全性,而传统点预测方法不能计及电网运行中的众多不确定性因素,提出一种基于改进高斯过程回归的短期负荷区间预测方法。采用模糊C-均值聚类算法从历史数据中寻找相似日,从而构建更为合理的样本集,并采用多核协方差函数改进传统高斯过程回归算法,最终得到一定置信水平下的区间预测结果。实际算例计算结果表明,该方法与常规方法相比,预测精度有所提高,其区间预测结果覆盖率较高,适合工程实际应用。 展开更多
关键词 区间预测 高斯过程回归 电力系统短期负荷 多核协方差函数 聚类分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部