深度学习技术对心电图进行自动的疾病诊断具有十分重要的意义。但现有的分类算法存在计算速度慢、实时性差以及对心电信号多尺度特征利用不充分的问题,会对某些疾病产生漏检,影响自动诊断技术的效率和精确度。因此提出了一种融合注意力...深度学习技术对心电图进行自动的疾病诊断具有十分重要的意义。但现有的分类算法存在计算速度慢、实时性差以及对心电信号多尺度特征利用不充分的问题,会对某些疾病产生漏检,影响自动诊断技术的效率和精确度。因此提出了一种融合注意力机制与多尺度特征提取的轻量化心电图多标签分类网络(Lightweight Network with Attention for Multi Scale Classification,LAMSCN)。该模型可以有效地识别多种心脏病症状。实验结果表明,与MobileNet等主流模型相比,LAMSCN有效降低了模型参数量,同时对17种疾病的分类性能指标F1可以达到0.905,极大降低了对部署设备的要求。展开更多
多标签分类在基因分类,药物发现和文本分类等实际问题中有着广泛的应用.已存在的多标签分类算法,通常都是从网络中随机的选取节点作为训练集.然而,在分类算法执行的过程中,网络中不同节点所起的作用不同.在给定训练集数目的情况下,选择...多标签分类在基因分类,药物发现和文本分类等实际问题中有着广泛的应用.已存在的多标签分类算法,通常都是从网络中随机的选取节点作为训练集.然而,在分类算法执行的过程中,网络中不同节点所起的作用不同.在给定训练集数目的情况下,选择的训练集不同,分类精度也会不同.所以我们引入了种子节点的概念,标签分类从种子节点开始,经过不断推理,得到网络中其他所有节点的标签.本文提出了SHDA(Nodes Selection of High Degree from Each Affiliation)算法,即从网络的每个社团中,按比例的选取度数较大的节点,然后将其合并,处理后得到种子节点.真实数据集上的实验表明,将种子节点用作训练集进行多标签分类,能够提升网络环境下多标签分类的准确率.展开更多
文摘深度学习技术对心电图进行自动的疾病诊断具有十分重要的意义。但现有的分类算法存在计算速度慢、实时性差以及对心电信号多尺度特征利用不充分的问题,会对某些疾病产生漏检,影响自动诊断技术的效率和精确度。因此提出了一种融合注意力机制与多尺度特征提取的轻量化心电图多标签分类网络(Lightweight Network with Attention for Multi Scale Classification,LAMSCN)。该模型可以有效地识别多种心脏病症状。实验结果表明,与MobileNet等主流模型相比,LAMSCN有效降低了模型参数量,同时对17种疾病的分类性能指标F1可以达到0.905,极大降低了对部署设备的要求。
文摘多标签分类在基因分类,药物发现和文本分类等实际问题中有着广泛的应用.已存在的多标签分类算法,通常都是从网络中随机的选取节点作为训练集.然而,在分类算法执行的过程中,网络中不同节点所起的作用不同.在给定训练集数目的情况下,选择的训练集不同,分类精度也会不同.所以我们引入了种子节点的概念,标签分类从种子节点开始,经过不断推理,得到网络中其他所有节点的标签.本文提出了SHDA(Nodes Selection of High Degree from Each Affiliation)算法,即从网络的每个社团中,按比例的选取度数较大的节点,然后将其合并,处理后得到种子节点.真实数据集上的实验表明,将种子节点用作训练集进行多标签分类,能够提升网络环境下多标签分类的准确率.