Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84...Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.展开更多
A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake wa...A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.展开更多
A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Compar...A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.展开更多
A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A s...A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A systematic procedure was performed to obtain the complete model of a multi-machine power network including LPP.For damping of oscillations focusing on inter-area oscillatory modes,a hybrid controller for LPP was proposed.The performance of the suggested controller was tested using a 16-machine 5-area network.The results indicate that the proposed hybrid controller for LPP provides sufficient damping to the low-frequency modes of power system for a wide range of operating conditions.The method presented in this work effectively indentifies the impact of increased PV penetration and its controller on dynamic performance of multi-machine power network containing LPP.Simulation results demonstrate that the model presented can be used in designing of essential controllers for LPP.展开更多
文摘Different solvothermal reactions of ZnC2O_(4)with oxalic acid(H_(2)ox)and 1,2,4-triazole(Htrz)successfully gave a new quaternary(NJTU-Bai83,NJTU-Bai=Nanjing Tech University Bai's group)and a new quinary(NJTU-Bai84)anionic metal-organic frameworks(MOFs),where NJTU-Bai83=(Me_(2)NH_(2))2[Zn_(3)(trz)_(2)(ox)_(3)]·2H_(2)O and NJTU-Bai84=(Me_(2)NH_(2))[Zn_(3)(trz)_(3)(ox)_(2)]·H_(2)O,respectively.With the[Zn_(2)(ox)4(trz)_(2)]secondary building unit(SBU)in NJTU-Bai83 replaced by the[Zn_(3)(ox)_(2)(trz)_(6)]and planar[Zn(ox)_(2)(trz)_(2)]ones in NJTU-Bai84,2D supramolecular building layers(SBLs)are changed from the A-layer and B-layer to another A-layer,while pillars are transformed from the tetrahedral[Zn(ox)_(2)(trz)_(2)]SBU to the irregular tetrahedral[Zn(ox)_(2)(trz)_(2)]and planar[Zn(ox)_(2)(trz)_(2)]SBUs.Thus,cdq-topological quaternary NJTU-Bai83 is tuned to(4,4,8)-c new topological quinary NJTU-Bai84.Two MOFs were well characterized by powder X-ray diffraction,thermogravimetric analysis,elemental analysis,etc.CCDC:2351819,NJTU-Bai83;2351820,NJTU-Bai84.
文摘A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.
基金Project(2006AA04Z228) supported by the National High-Tech Research and Development Program of ChinaProject(PCSIRT) supported by Program for Changjiang Scholars and Innovative Research Team in University
文摘A new impedance controller based on the dynamic surface control-backstepping technique to actualize the anticipant dynamic relationship between the motion of end-effector and the external torques was presented. Comparing with the traditional backstepping method that has "explosion of terms" problem, the new proposed control system is a combination of the dynamic surface control technique and the backstepping. The dynamic surface control (DSC) technique can resolve the "explosion of terms" problem that is caused by differential coefficient calculation in the model, and the problem can bring a complexity that will cause the backstepping method hardly to be applied to the practical application, especially to the multi-joint robot. Finally, the validity of the method was proved in the laboratory environment that was set up on the 5-DOF (degree of freedom) flexible joint robot. Tracking errors of DSC-backstepping impedance control that were 2.0 and 1.5 mm are better than those of backstepping impedance control which were 3.5 and 2.5 mm in directions X, Y in free space, respectively. And the anticipant Cartesian impedance behavior and compliant behavior were nchieved successfully as depicted theoretically.
文摘A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A systematic procedure was performed to obtain the complete model of a multi-machine power network including LPP.For damping of oscillations focusing on inter-area oscillatory modes,a hybrid controller for LPP was proposed.The performance of the suggested controller was tested using a 16-machine 5-area network.The results indicate that the proposed hybrid controller for LPP provides sufficient damping to the low-frequency modes of power system for a wide range of operating conditions.The method presented in this work effectively indentifies the impact of increased PV penetration and its controller on dynamic performance of multi-machine power network containing LPP.Simulation results demonstrate that the model presented can be used in designing of essential controllers for LPP.