期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
最大值控制的多最小支持度关联规则挖掘算法 被引量:10
1
作者 何朝阳 赵剑锋 江水 《计算机工程》 EI CAS CSCD 北大核心 2006年第11期103-105,共3页
大部分关联规则挖掘算法使用同一最小支持度阈值进行挖掘,但在实际使用中由于各项目发生频率的不同,理应有不同的最小支持度支持。该文提出了一种多最小支持度关联规则挖掘算法,为每一项目设置一最小支持度,同时在生成备选集和最大频繁... 大部分关联规则挖掘算法使用同一最小支持度阈值进行挖掘,但在实际使用中由于各项目发生频率的不同,理应有不同的最小支持度支持。该文提出了一种多最小支持度关联规则挖掘算法,为每一项目设置一最小支持度,同时在生成备选集和最大频繁集的过程中使用最大值控制来实现剪枝,有效地提高了该算法的效率,最后用一个超市销售物品的例子来说明该算法的使用。 展开更多
关键词 关联规则 最大值控制 多最小支持度 挖掘算法
在线阅读 下载PDF
多最小支持度的加权关联规则挖掘算法 被引量:2
2
作者 李彦伟 戴月明 王金鑫 《计算机工程与设计》 CSCD 北大核心 2011年第3期955-957,962,共4页
针对数据集中交易记录和数据项的重要性不同问题,提出了一种多最小支持度的加权关联规则挖掘算法,允许用户设定多个最小支持度,给出交易记录不同的权重,从而发现有价值的关联规则。该算法按项目的最小支持度升序对交易记录进行分类,按... 针对数据集中交易记录和数据项的重要性不同问题,提出了一种多最小支持度的加权关联规则挖掘算法,允许用户设定多个最小支持度,给出交易记录不同的权重,从而发现有价值的关联规则。该算法按项目的最小支持度升序对交易记录进行分类,按类别依次求出每一类别内的加权频繁集。在挖掘过程中由于剔除了冗余项目并对相同项集累加计数,且不需多次重复扫描数据库,从而提高了挖掘效率。实验结果表明,新算法能有效地从数据集中挖掘出加权关联规则。 展开更多
关键词 数据挖掘 多最小支持度 垂直权值 加权关联规则 加权频繁项集
在线阅读 下载PDF
基于多最小支持度的多层模糊关联规则挖掘 被引量:1
3
作者 常浩 《计算机工程与设计》 CSCD 北大核心 2012年第8期3224-3229,共6页
为了在事务数据库中发现关联规则,在现实挖掘应用中,经常采用不同的标准去判断不同项目的重要性,管理项目之间的分类关系和处理定量数据集这3个方法去处理问题,因此提出一个在定量事务数据库中采用多最小支持度,在项目集中获取隐含知识... 为了在事务数据库中发现关联规则,在现实挖掘应用中,经常采用不同的标准去判断不同项目的重要性,管理项目之间的分类关系和处理定量数据集这3个方法去处理问题,因此提出一个在定量事务数据库中采用多最小支持度,在项目集中获取隐含知识的多层模糊关联规则挖掘算法。该挖掘算法使用两种支持度约束和至上而下逐步细化的方法推导出频繁项集,同时可以发现交叉层次的模糊关联规则。通过实例证明了该挖掘算法在多最小支持度约束下推导出的多层模糊关联规则是易于理解和有意义的,具有很好的效率和伸缩性。 展开更多
关键词 数据挖掘 关联规则 模糊集 多最小支持度 分类
在线阅读 下载PDF
基于多最小支持度的空间关联规则发现 被引量:7
4
作者 吴安阳 赵卫东 《计算机应用》 CSCD 北大核心 2005年第9期2171-2174,共4页
空间关联规则挖掘可应用于发现空间数据库中大量空间谓词与非空间谓词之间的特定空间关系。论文针对区县道路交通数据提出了一种基于多最小支持度的空间关联规则挖掘算法,并给出了在GIS中进行空间关联规则挖掘的一般方法和流程。该挖掘... 空间关联规则挖掘可应用于发现空间数据库中大量空间谓词与非空间谓词之间的特定空间关系。论文针对区县道路交通数据提出了一种基于多最小支持度的空间关联规则挖掘算法,并给出了在GIS中进行空间关联规则挖掘的一般方法和流程。该挖掘算法可以从城市道路地理信息数据库中发现用户感兴趣的空间关联规则,经实际应用于城市道路规划管理系统,证明该算法是有效、可行的。 展开更多
关键词 空间关联规则 GIS 空间聚类 多最小支持度 最大频繁项目集
在线阅读 下载PDF
一种多最小支持度加权关联规则挖掘算法 被引量:3
5
作者 张争龙 李星毅 《科学技术与工程》 北大核心 2013年第19期5687-5691,共5页
针对实际交易数据库中,不同项目的重要性和出现概率各不相同的两个问题,提出一种基于等价类和多最小支持度的加权关联规则算法,从而挖掘出那些覆盖较少数据但却有意义、用户可能更感兴趣的关联规则。算法按照项目的最小支持度升序对交... 针对实际交易数据库中,不同项目的重要性和出现概率各不相同的两个问题,提出一种基于等价类和多最小支持度的加权关联规则算法,从而挖掘出那些覆盖较少数据但却有意义、用户可能更感兴趣的关联规则。算法按照项目的最小支持度升序对交易记录进行等价类划分,然后按照项目的最小支持度降序依次求出每一等价类内的加权频繁项集。算法采用垂直数据库的数据表示形式,挖掘过程中避免了对数据库的重复扫描。对比实验结果证明,改进算法具有良好的挖掘性能。 展开更多
关键词 数据挖掘 多最小支持度 加权关联规则 等价类 垂直数据库
在线阅读 下载PDF
多最小支持度关联规则改进算法 被引量:4
6
作者 梁杨 钱晓东 《西南大学学报(自然科学版)》 CAS CSCD 北大核心 2019年第7期131-141,共11页
由于大数据具有多样性的特点,在数据挖掘过程中采用单一最小支持度会出现较多冗余规则,造成挖掘效率不高等问题,该文提出一种基于多最小支持度关联规则改进算法.通过给每一项目设置单独的支持度阈值,构建多最小支持度模式树,利用最小频... 由于大数据具有多样性的特点,在数据挖掘过程中采用单一最小支持度会出现较多冗余规则,造成挖掘效率不高等问题,该文提出一种基于多最小支持度关联规则改进算法.通过给每一项目设置单独的支持度阈值,构建多最小支持度模式树,利用最小频繁项目作为节点筛选标准,进行冗余节点删除;在挖掘频繁项集的过程中利用排序向下闭合的性质,删除冗余的候选项集,同时能够自动停止向下挖掘,从而快速直接地得到所有频繁项集,并且不需要多次扫描数据库.实验结果表明,改进算法能够提高挖掘效率,节省计算时间. 展开更多
关键词 大数据 频繁项集 关联规则 多最小支持度
在线阅读 下载PDF
基于动态多最小支持度的用户频繁轨迹挖掘 被引量:1
7
作者 严爱俐 刘漫丹 《计算机工程与设计》 北大核心 2022年第6期1657-1664,共8页
为解决频繁轨迹模式挖掘中单一最小支持度带来的问题,提出一种多最小支持度的频繁序列挖掘算法,根据获取的用户历史轨迹数据确定用户多最小支持度获取模型。由于仅通过PrefixSpan算法挖掘出用户的历史频繁轨迹模式,无法了解用户在一段... 为解决频繁轨迹模式挖掘中单一最小支持度带来的问题,提出一种多最小支持度的频繁序列挖掘算法,根据获取的用户历史轨迹数据确定用户多最小支持度获取模型。由于仅通过PrefixSpan算法挖掘出用户的历史频繁轨迹模式,无法了解用户在一段时间内的地点偏好变化,通过动态加权的方式结合之前挖掘出的用户频繁轨迹模式得到用户在不同时期的地点偏好变化,利用序列压缩和序列匹配减少用户频繁轨迹模式的存储空间。通过实例挖掘,验证了改进算法的有效性。 展开更多
关键词 时空轨迹 校园无线网络 频繁轨迹模式 多最小支持度 前缀投影模式挖掘算法
在线阅读 下载PDF
基于FP树的多最小支持度广义关联规则挖掘算法
8
作者 佘俊胜 黄战 李亚丹 《小型微型计算机系统》 CSCD 北大核心 2007年第12期2212-2215,共4页
采用MIS-tree结构保存频繁模式的信息提出了基于频繁模式增长挖掘原型的CFP-tax算法,该算法可避免候选集的生成和高代价的数据库扫描并能高效地找出数据库中所有频繁项集.基于虚拟数据集对算法的性能进行了评估,结果表明CFP-tax算法比... 采用MIS-tree结构保存频繁模式的信息提出了基于频繁模式增长挖掘原型的CFP-tax算法,该算法可避免候选集的生成和高代价的数据库扫描并能高效地找出数据库中所有频繁项集.基于虚拟数据集对算法的性能进行了评估,结果表明CFP-tax算法比经典的MMS-Cumulate算法性能有显著的提高. 展开更多
关键词 数据挖掘 广义关联规则 多最小支持度 频繁模式树
在线阅读 下载PDF
基于多最小支持度的增量式关联规则挖掘算法研究
9
作者 朱志华 朱震宇 《广东电力》 2009年第2期1-5,共5页
在传统的Apriori关联规则挖掘算法分析基础上,针对目前多最小支持度和增量式关联规则挖掘的局限性,提出基于多最小支持度的增量式关联规则挖掘算法。该算法适用于事务出现频率一致及不一致的情况,利用多最小支持度能挖掘出更有意义的结... 在传统的Apriori关联规则挖掘算法分析基础上,针对目前多最小支持度和增量式关联规则挖掘的局限性,提出基于多最小支持度的增量式关联规则挖掘算法。该算法适用于事务出现频率一致及不一致的情况,利用多最小支持度能挖掘出更有意义的结果;同时,该算法还能实现事务数据不断增加时的数据挖掘,提高了挖掘的效率。应用电力客户信用数据库进行实验的结果表明,改进算法能有效挖掘出稀有项,分析出潜在的信用风险客户,对电力客户信用评价具有辅助决策作用。 展开更多
关键词 多最小支持度 增量式算法 关联规则 数据挖掘
在线阅读 下载PDF
使用多支持度的关联规则分类算法 被引量:2
10
作者 黄亚东 刘渊 《计算机应用与软件》 2017年第9期246-252,共7页
传统关联分类算法使用单一最小项目支持度挖掘关联规则,导致稀有项关联规则无法被发现,从而影响分类的准确性和实用性。提出一种多支持度关联规则分类算法MS-CBAR(Multiple Supports-Classification Based on Association Rules),将多... 传统关联分类算法使用单一最小项目支持度挖掘关联规则,导致稀有项关联规则无法被发现,从而影响分类的准确性和实用性。提出一种多支持度关联规则分类算法MS-CBAR(Multiple Supports-Classification Based on Association Rules),将多最小项目支持度模型应用于关联分类,以有效挖掘稀有项。该算法为数据库中的规则项提供了用户可定义的最小项目支持度。MS-CBAR算法使用项的最小项支持度阈值、类的最小类支持度值和规则项的最小支持度值决定分类规则是否频繁。生成分类规则集后,使用最高优先度规则覆盖法基于规则集建立分类器。实验表明,所提算法在包含稀有项目及稀有类的数据集中准确率高于传统关联分类算法及其相关算法,表现更稳定。 展开更多
关键词 数据挖掘 多最小项目支持 基于关联的分类算法 MS-CBAR
在线阅读 下载PDF
基于优化的MsEclat算法的铁路机车事故故障关联规则挖掘 被引量:14
11
作者 李鑫 史天运 +2 位作者 常宝 马小宁 刘军 《中国铁道科学》 EI CAS CSCD 北大核心 2021年第4期155-165,共11页
为从铁路机车大数据中挖掘出与机车事故故障有关的关联规则,提出1种优化的MsEclat算法。先提出改进的Eclat算法——MsEclat算法,构建最小支持度索引表,以各项目的支持度值为排序依据重新构建数据集,依据垂直挖掘思想获得针对不同项目的... 为从铁路机车大数据中挖掘出与机车事故故障有关的关联规则,提出1种优化的MsEclat算法。先提出改进的Eclat算法——MsEclat算法,构建最小支持度索引表,以各项目的支持度值为排序依据重新构建数据集,依据垂直挖掘思想获得针对不同项目的频繁项集,解决Eclat算法无法在多最小支持度情况下挖掘关联规则的缺陷;进一步改进得到优化的MsEclat算法,在融合布尔矩阵、并行计算编程模型MapReduce基础上,设计频繁项集挖掘步骤,提高算法在大数据分析场景下的执行效率。通过算法对比,验证MsEclat算法及其优化算法在多最小支持度关联规则挖掘方面的计算效率优势。最后,以某铁路局的机车运转养护大数据为例,采用优化的MsEclat算法,挖掘机车事故故障的关联规则。结果表明:该算法在6个分布式节点的情况下耗时3.945034 s,挖掘得到频繁项集156条,如运用故障高发的机车中,83.78%的概率会同时出现频次较多的行车安全装备问题等;形成相应关联规则后,可用于分析该局机车的事故故障发生情况及质量安全状态。 展开更多
关键词 机车事故故障 关联规则 大数据分析 数据挖掘技术 MsEclat算法 多最小支持度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部