由于多智能体所处环境动态变化,并且单个智能体的决策也会影响其他智能体,这使得单智能体深度强化学习算法难以在多智能体环境中保持稳定.为了适应多智能体环境,本文利用集中训练和分散执行框架Cen-tralized Training with Decentralize...由于多智能体所处环境动态变化,并且单个智能体的决策也会影响其他智能体,这使得单智能体深度强化学习算法难以在多智能体环境中保持稳定.为了适应多智能体环境,本文利用集中训练和分散执行框架Cen-tralized Training with Decentralized Execution(CTDE),对单智能体深度强化学习算法Soft Actor-Critic(SAC)进行了改进,引入智能体通信机制,构建Multi-Agent Soft Actor-Critic(MASAC)算法. MASAC中智能体共享观察信息和历史经验,有效减少了环境不稳定性对算法造成的影响.最后,本文在协同以及协同竞争混合的任务中,对MASAC算法性能进行了实验分析,结果表明MASAC相对于SAC在多智能体环境中具有更好的稳定性.展开更多
大容量电池储能电站功率分配的决策变量多,且策略需考虑多个优化目标及能自动适应场景的不确定性。为此,提出了一种基于多智能体深度强化学习(multi-agent deep reinforcement learning,MADRL)的电池储能电站功率分配决策方法。首先,基...大容量电池储能电站功率分配的决策变量多,且策略需考虑多个优化目标及能自动适应场景的不确定性。为此,提出了一种基于多智能体深度强化学习(multi-agent deep reinforcement learning,MADRL)的电池储能电站功率分配决策方法。首先,基于大容量电池储能电站结构及其功率分配特性构建基于MADRL的功率分配决策框架,每个储能单元设置一个功率分配智能体,多个智能体构成合作关系;然后,设计考虑储能电站有功功率损耗、荷电状态(state of charge,SOC)一致性和健康状态损失最小优化目标的功率分配智能体模型,采用深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法去中心化训练各智能体网络参数,算法收敛后得到储能子系统充放电功率值。最后,算例验证了所提方法的有效性,能在有效提高储能子系统SOC均衡性的同时降低有功功率损耗、健康状态损失和充放电切换次数。展开更多
边缘侧大模型应用正成为推动智能健康、智慧城市等领域智能化与数字化进程的关键驱动力。然而,大模型海量智能任务异构性和高动态网络的不可预测性,使得边缘设备有限的算力资源难以满足复杂推理任务对高效且可靠服务质量(Quality of Ser...边缘侧大模型应用正成为推动智能健康、智慧城市等领域智能化与数字化进程的关键驱动力。然而,大模型海量智能任务异构性和高动态网络的不可预测性,使得边缘设备有限的算力资源难以满足复杂推理任务对高效且可靠服务质量(Quality of Service,QoS)的需求。因此本文提出了一种基于生成对抗网络(Generative Adversarial Network,GAN)增强的多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning,MADRL)的边缘推理与异构资源协同优化方法,以实现数字孪生(Digital Twin,DT)驱动的边缘侧大模型赋能系统中异构资源的动态负载均衡,确保推理任务高效性与可靠性。首先,本文构建并分析了DT驱动的边缘侧大模型系统中的物理网络层和孪生网络层,并采用GAN实现对物理实体的孪生映射,从而对海量异构边缘数据进行分布式处理、生成与优化。接着,利用MADRL算法来对系统中的异构资源进行综合量化与协同优化,并将边缘推理数据反馈至MADRL算法中以减少集中式训练过程中的数据通信开销。同时,借助于联邦学习,该架构能够实现多方知识共享,从而有效提升模型训练速度与性能。最后,仿真结果表明,该算法能够在动态复杂大模型赋能边缘系统环境中有效降低推理任务的时延和能耗,充分利用有限的系统资源,确保推理任务的高效性,并提升智能服务的质量。展开更多
文摘由于多智能体所处环境动态变化,并且单个智能体的决策也会影响其他智能体,这使得单智能体深度强化学习算法难以在多智能体环境中保持稳定.为了适应多智能体环境,本文利用集中训练和分散执行框架Cen-tralized Training with Decentralized Execution(CTDE),对单智能体深度强化学习算法Soft Actor-Critic(SAC)进行了改进,引入智能体通信机制,构建Multi-Agent Soft Actor-Critic(MASAC)算法. MASAC中智能体共享观察信息和历史经验,有效减少了环境不稳定性对算法造成的影响.最后,本文在协同以及协同竞争混合的任务中,对MASAC算法性能进行了实验分析,结果表明MASAC相对于SAC在多智能体环境中具有更好的稳定性.
文摘近些年,深度强化学习(Deep Reinforcement Learning,DRL)已成为人工智能领域一个新的机器学习范式与方法论,它在许多高维度大状态的复杂空间任务中能够取得显著的成功.然而,传统的深度强化学习仍然存在着学习效率低、训练时间长的问题,在多智能体的行为决策研究中难以达到理想的效果.针对这些问题,本文提出了一种基于分区缓存区重放与多线程交互的多智能体深度强化学习算法(Partitioned Buffer Replay and Multiple Process Interaction,PBR-MPI).首先,该算法使用分区缓存区的经验重放形式,通过划分奖励空间来区分正面经验、负面经验与中性经验,并在训练时使用分层随机的采样方式抽取这些经验数据.其次,算法运用多线程的交互方式促进了智能体与环境的试错过程,通过智能体的多个克隆体并行的学习并整合它们的学习经验来训练网络模型的参数.然后,为了构建PBR-MPI算法的适用场景,本文根据目前多智能体系统(Multi-Agent System,MAS)的最新研究进展,将多智能体的信息交互方式归纳总结为集中式信息交互、全信息交互和欠信息交互三大类.最后,将新算法与其它的多智能体DRL算法分别在三种不同的信息交互场景中进行对比实验,用于验证和评价PBR-MPI的有效性及整体性能.实验结果表明,在智能体个数为5的多智能体目标追踪任务中,缓存区数为3、线程数为5的PBR-MPI算法的学习收敛速度平均提高了21%,训练效率平均提升了34%,并且在综合性能的评估中新算法的整体性能改善了50%.
文摘大容量电池储能电站功率分配的决策变量多,且策略需考虑多个优化目标及能自动适应场景的不确定性。为此,提出了一种基于多智能体深度强化学习(multi-agent deep reinforcement learning,MADRL)的电池储能电站功率分配决策方法。首先,基于大容量电池储能电站结构及其功率分配特性构建基于MADRL的功率分配决策框架,每个储能单元设置一个功率分配智能体,多个智能体构成合作关系;然后,设计考虑储能电站有功功率损耗、荷电状态(state of charge,SOC)一致性和健康状态损失最小优化目标的功率分配智能体模型,采用深度确定性策略梯度(deep deterministic policy gradient,DDPG)算法去中心化训练各智能体网络参数,算法收敛后得到储能子系统充放电功率值。最后,算例验证了所提方法的有效性,能在有效提高储能子系统SOC均衡性的同时降低有功功率损耗、健康状态损失和充放电切换次数。
文摘边缘侧大模型应用正成为推动智能健康、智慧城市等领域智能化与数字化进程的关键驱动力。然而,大模型海量智能任务异构性和高动态网络的不可预测性,使得边缘设备有限的算力资源难以满足复杂推理任务对高效且可靠服务质量(Quality of Service,QoS)的需求。因此本文提出了一种基于生成对抗网络(Generative Adversarial Network,GAN)增强的多智能体深度强化学习(Multi-Agent Deep Reinforcement Learning,MADRL)的边缘推理与异构资源协同优化方法,以实现数字孪生(Digital Twin,DT)驱动的边缘侧大模型赋能系统中异构资源的动态负载均衡,确保推理任务高效性与可靠性。首先,本文构建并分析了DT驱动的边缘侧大模型系统中的物理网络层和孪生网络层,并采用GAN实现对物理实体的孪生映射,从而对海量异构边缘数据进行分布式处理、生成与优化。接着,利用MADRL算法来对系统中的异构资源进行综合量化与协同优化,并将边缘推理数据反馈至MADRL算法中以减少集中式训练过程中的数据通信开销。同时,借助于联邦学习,该架构能够实现多方知识共享,从而有效提升模型训练速度与性能。最后,仿真结果表明,该算法能够在动态复杂大模型赋能边缘系统环境中有效降低推理任务的时延和能耗,充分利用有限的系统资源,确保推理任务的高效性,并提升智能服务的质量。