在林业管理中,及时发现火灾并识别其规模对于安全防护和治理火灾至关重要。针对现有火灾检测算法存在的精度低、漏检误检和实时性不足等问题,提出一种无人机航拍图像下火灾实时检测算法——MDSYOLOv8。以YOLOv8为基线算法,将骨干网络第...在林业管理中,及时发现火灾并识别其规模对于安全防护和治理火灾至关重要。针对现有火灾检测算法存在的精度低、漏检误检和实时性不足等问题,提出一种无人机航拍图像下火灾实时检测算法——MDSYOLOv8。以YOLOv8为基线算法,将骨干网络第7层卷积模块和颈部网络卷积模块替换成动态蛇形卷积(DSConv),提高算法的特征提取性能,并强化算法对微小特征的学习能力;然后在颈部与检测头之间添加多维协作注意力机制(MCA),加强颈部特征融合,增强算法对小目标的检测能力,并抑制无关背景信息;最后使用SIoU损失函数替换原YOLOv8中的CIoU损失函数,加快算法的收敛速度和回归精度。实验结果表明,MDSYOLOv8在公开数据集KMU上对烟雾目标的检测精度mAP达到95.89%,相较于基线YOLOv8提高了3.33个百分点,具有卓越的检测性能。此外,本研究采集互联网上的无人机航拍火灾图像制作UFF(UAV field fire)数据集,主要对象为火焰和烟雾,包含森林和城市等火灾隐患可能发生场景。在自制数据集UFF上进行深度实验分析,MDSYOLOv8的检测精度达到93.98%,检测速度为54帧/s,并且能同时识别烟雾和火焰两种火灾场景中的主要目标,与主流目标检测方法相比,在检测精度和效率方面均展现出明显优势,更加契合航拍场景下的火灾检测应用。展开更多
针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimiza...针对动态不确定战场环境下多无人机对多区域、多目标的协同察打任务规划过程中存在的信息不确定、任务多约束及航迹强耦合的多目标优化与决策问题,结合Dubins航迹规划算法,提出了一种融合多种改进策略的灰狼优化算法(grey wolf optimization algorithm incorporating multiple improvement strategies,IMISGWO).首先,针对动态环境带来的无人机巡航速度及察打任务消失时间的不确定性,基于可信性理论建立了以最大化任务收益为指标的任务规划数学模型;其次,为实现该问题的快速求解,设计了初始解均匀分布、个体通信机制调整、动态权重更新和跳出局部最优等策略,提升算法解搜索能力;最后,构建了多无人机察打一体典型任务仿真场景,通过数字仿真以及虚实结合半实物仿真试验验证了算法的可行性和有效性.仿真结果表明:算法在求解不确定环境下耦合航迹的多无人机察打一体任务规划问题时,能够生成多机高效的任务执行序列和满足无人机飞行性能约束的飞行轨迹,且能够适用于无人机数量增加导致问题复杂度增加情形下此类问题的求解.展开更多
文摘在林业管理中,及时发现火灾并识别其规模对于安全防护和治理火灾至关重要。针对现有火灾检测算法存在的精度低、漏检误检和实时性不足等问题,提出一种无人机航拍图像下火灾实时检测算法——MDSYOLOv8。以YOLOv8为基线算法,将骨干网络第7层卷积模块和颈部网络卷积模块替换成动态蛇形卷积(DSConv),提高算法的特征提取性能,并强化算法对微小特征的学习能力;然后在颈部与检测头之间添加多维协作注意力机制(MCA),加强颈部特征融合,增强算法对小目标的检测能力,并抑制无关背景信息;最后使用SIoU损失函数替换原YOLOv8中的CIoU损失函数,加快算法的收敛速度和回归精度。实验结果表明,MDSYOLOv8在公开数据集KMU上对烟雾目标的检测精度mAP达到95.89%,相较于基线YOLOv8提高了3.33个百分点,具有卓越的检测性能。此外,本研究采集互联网上的无人机航拍火灾图像制作UFF(UAV field fire)数据集,主要对象为火焰和烟雾,包含森林和城市等火灾隐患可能发生场景。在自制数据集UFF上进行深度实验分析,MDSYOLOv8的检测精度达到93.98%,检测速度为54帧/s,并且能同时识别烟雾和火焰两种火灾场景中的主要目标,与主流目标检测方法相比,在检测精度和效率方面均展现出明显优势,更加契合航拍场景下的火灾检测应用。
文摘由于高视距(Line of Sight,LOS)的空对地通信,无人机(Unmanned Aerial Vehicle,UAV)通信网络容易遭受窃听者的截获。为此,针对智能反射面(Intelligent Reflecting Surface,IRS)辅助UAV通信系统,提出基于改进差分进化算法的安全速率优化(Optimal Secrecy Rate Based on Improved Differential Evolution,OSR-IDE)算法,进而提升系统的安全速率。将IRS与UAV结合,提升信号传输质量。OSR-IDE算法联合优化UAV传输的波束赋形(Passive Beamforming,PBF)、IRS相移、IRS和UAV位置来最大化系统的安全速率。建立最大化系统安全速率优化问题模型,利用改进的差分进化算法求解。仿真结果表明,OSR-IDE算法的安全速率优于基准算法。