针对化工过程运行状态在线评估的问题,提出多数据空间全潜结构映射(multi-space total projection to latent structures,Ms T-PLS)性能评估方法。该方法采用"离线建模,在线评估"的评估策略。首先对历史多数据输入空间进行全...针对化工过程运行状态在线评估的问题,提出多数据空间全潜结构映射(multi-space total projection to latent structures,Ms T-PLS)性能评估方法。该方法采用"离线建模,在线评估"的评估策略。首先对历史多数据输入空间进行全面分解,结合多数据空间基向量提取方法,剔除多数据输入空间中与质量变量无关信息的干扰。在与质量变量相关的多数据输入空间上,建立不同运行性能等级的离线数据网络分类模型,实现"离线建模"。"在线评估"阶段,以数据滑动时间窗为评估单元,将过程性能分为稳定和过渡性能等级,把在线数据与历史性能等级进行相似度匹配。利用过程变量相对贡献度,对性能变化起决定性影响的过程变量进行识别和贡献度分析,为系统性能劣化原因的识别提供了参考。最后,应用到乙烯裂解过程在线性能评估中,说明了本评估方法可以对系统进行准确的在线性能评估。展开更多
针对化工过程中因输入输出数据间非线性关系造成在线性能评估准确度不足的问题,提出一种基于多数据空间非线性迭代偏最小二乘和高斯过程回归(multi-space nonlinear iterative partial least squares and Gaussian process regression,M...针对化工过程中因输入输出数据间非线性关系造成在线性能评估准确度不足的问题,提出一种基于多数据空间非线性迭代偏最小二乘和高斯过程回归(multi-space nonlinear iterative partial least squares and Gaussian process regression,Ms-NIPLS-GPR)的性能分级评估方法。首先将性能相近的过程历史数据划分成不同性能等级的集合,利用Ms-NIPLS方法提取不同性能等级训练数据的特征子空间,然后用GPR获得特征子空间与性能等级标签之间的非线性映射结构,建立输入数据与性能等级之间的离线模型。得到模型后,在线评估当前过程性能等级,同时通过构造过渡性能系数来区分稳态性能等级和稳态性能等级间的过渡性能状态。最后,将该方法应用到乙烯裂解过程在线性能评估中,说明该性能评估方法的有效性和准确性。展开更多
文摘针对化工过程运行状态在线评估的问题,提出多数据空间全潜结构映射(multi-space total projection to latent structures,Ms T-PLS)性能评估方法。该方法采用"离线建模,在线评估"的评估策略。首先对历史多数据输入空间进行全面分解,结合多数据空间基向量提取方法,剔除多数据输入空间中与质量变量无关信息的干扰。在与质量变量相关的多数据输入空间上,建立不同运行性能等级的离线数据网络分类模型,实现"离线建模"。"在线评估"阶段,以数据滑动时间窗为评估单元,将过程性能分为稳定和过渡性能等级,把在线数据与历史性能等级进行相似度匹配。利用过程变量相对贡献度,对性能变化起决定性影响的过程变量进行识别和贡献度分析,为系统性能劣化原因的识别提供了参考。最后,应用到乙烯裂解过程在线性能评估中,说明了本评估方法可以对系统进行准确的在线性能评估。
文摘针对化工过程中因输入输出数据间非线性关系造成在线性能评估准确度不足的问题,提出一种基于多数据空间非线性迭代偏最小二乘和高斯过程回归(multi-space nonlinear iterative partial least squares and Gaussian process regression,Ms-NIPLS-GPR)的性能分级评估方法。首先将性能相近的过程历史数据划分成不同性能等级的集合,利用Ms-NIPLS方法提取不同性能等级训练数据的特征子空间,然后用GPR获得特征子空间与性能等级标签之间的非线性映射结构,建立输入数据与性能等级之间的离线模型。得到模型后,在线评估当前过程性能等级,同时通过构造过渡性能系数来区分稳态性能等级和稳态性能等级间的过渡性能状态。最后,将该方法应用到乙烯裂解过程在线性能评估中,说明该性能评估方法的有效性和准确性。