A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with qu...A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.展开更多
A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake wa...A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.展开更多
With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case,...With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.展开更多
A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric...A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric actuators. According to the property of the modes varying with time, the performance index function was developed based on the optimal configuration principle of energy maximal dissipation, and the relevant optimal model was obtained. According to its characteristic, a float-encoding genetic algorithm, which is efficient, simple and excellent for solving the global-optimal solution of this problem, was adopted. Taking the plane manipulator as an example, the result of numerical calculation shows that, after the actuator/sensor position being optimized, the vibration amplitude of the multi-body system is reduced by 35% compared with that without optimization.展开更多
A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it w...A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it was based on coordinate descent iterations where coordinates were the unknown symbol phases. The PDS algorithm, together with a descent local search (also implemented as a version of the PDS algorithm), was used multiple times with different initializations in a proposed multiple phase detector; the solution with the minimum cost was then chosen as the final solution. The simulation results show that for highly loaded multiuser scenarios, the proposed technique has a detection performance that is close to the single-user bound. The results also show that the multiple phase detector allows detection in highly overloaded scenarios and it exhibits near-far resistance. In particular, the detector has a performance that is significantly better, and complexity that is significantly lower, than that of the detector based on semi-definite relaxation.展开更多
In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on th...In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on the adjoint matrix of the multivariable system model with time delays was introduced,and the decoupled models were reduced to first-order plus time delay models by analyzing the amplitude-frequency and phase-frequency characteristics. Secondly,according to the closed-loop characteristic equation of Smith predictor structure,proportion integration (PI) controllers were designed following the principle of pole assignment for Butterworth filter. Finally,using small-gain theorem and Nyquist stability criterion,sufficient and necessary conditions for robust stability were analyzed with multiplicative uncertainties,which could be encountered frequently in practice. The result shows that the method proposed has superiority for response speed and load disturbance rejection performance.展开更多
A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A s...A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A systematic procedure was performed to obtain the complete model of a multi-machine power network including LPP.For damping of oscillations focusing on inter-area oscillatory modes,a hybrid controller for LPP was proposed.The performance of the suggested controller was tested using a 16-machine 5-area network.The results indicate that the proposed hybrid controller for LPP provides sufficient damping to the low-frequency modes of power system for a wide range of operating conditions.The method presented in this work effectively indentifies the impact of increased PV penetration and its controller on dynamic performance of multi-machine power network containing LPP.Simulation results demonstrate that the model presented can be used in designing of essential controllers for LPP.展开更多
Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value,...Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value, a new consensus protocol for general discrete-time multi-agent system was proposed based on Lyapunov stability theory. For discrete-time multi-agent systems with desired trajectory, trajectory tracking and formation control problems were studied. The main idea of trajectory tracking problems was to design trajectory controller such that each agent tracked desired trajectory. For a type of formation problem with fixed formation structure, the formation structure set was introduced. According to the formation structure set, each agent can track its individual desired trajectory. Finally, simulations were provided to demonstrate the effectiveness of the theoretical results. The mlmerical results show that the states of agents converge to zero with consensus protocol, which is said to achieve a consensus asymptotically. In addition, through designing appropriate trajectory controllers, the simulation results show that agents converge to the desired trajectory asymptotically and can form different formations.展开更多
Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very sca...Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.展开更多
A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by t...A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.展开更多
As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was ap...As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was applied,the low sampling rate loop will seriously impact the dynamical characteristic of the system.After analyzing and calculating the impact law of the low sampling rate loop to the bandwidth and the stability of the tracking system,a kind of multi-rate control system design method was introduced.Corresponding to the different sampling rates of the inner loop and the outer loop,the multi-rate control strategy was constituted by a high sampling rate sub-controller and a low sampling rate sub-controller.The two sub-controllers were designed separately and connected by means of the sampling rate converter.The low sampling rate controller determined the response rapidity of the system,while the high sampling rate controller applied additionally effective control outputs to the system during a sampling interval of the low sampling rate controller.With the introduced high and low sampling rates sub-controllers,the tracking control system can achieve the same performance as a single-rate controller with high sampling rate,yet it works under a much lower sampling rate.The simulation and experimental results show the effectiveness of the introduced multi-rate control design method.It reduces the settling time by 5 times and the over shoot by 4 times compared with the PID control.展开更多
Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In ...Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In network-based control systems,error codes induced by noisy channel can significantly decrease the quality of control.To solve this problem,the network-based control system with delay and noisy channel is firstly modeled as an asynchronous dynamic system(ADS).Secondly,conditions of packet with error codes(PEC)loss rate by using M-ary modulation are obtained based on dynamic output feedback scheme.Thirdly,more importantly,the selection principle of M-ary modulation is proposed according to the measured signal-to-noise ratio(SNR)and conditions of PEC loss rate.Finally,system stability is analyzed and controller is designed through Lyapunov function and linear matrix inequality(LMI)scheme,and numerical simulations are made to demonstrate the effectiveness of the proposed scheme.展开更多
Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approa...Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.展开更多
A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the nov...A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.展开更多
基金Project(50390063) supported by the National Natural Science Foundation of China
文摘A kind of active vibration control method was presented based on active damping and optimization design for driving load of multibody system with quick startup and brake. Dynamical equation of multibody system with quick startup and brake and piezoelectric actuators intelligent structure was built. The optimum driving load was calculated by applying the presented method. The self-sensing and self-tuning closed-loop active vibration control in quick startup and brake process was realized. The control algorithm, using local velocity negative feedback, i.e. the output of a sensor only affects the output of the actuator collocated, can induce damping effectively to actively suppress the system vibration. Based on the optimization design for driving load of multibody system with quick startup and bake, the active damping of piezoelectric actuators intelligent structure was used to farther suppress the vibration of system. Theoretical analysis and calculation of numerical show that the proposed method makes the vibration of system decrease more than the optimal design method for driving load of multibody system.
文摘A kind of active vibration control method was presented through optimal design of driving load of multi-body system with quick startup and brake. Dynamical equation of multi-body system with quick startup and brake was built, and mathematical model of representing vibration control was also set up according to the moving process from startup to brake. Then optimization vibration control model of system driving load was founded by applying theory of optimization control, which takes rigid body moving variable of braking moment as the known condition, and vibration control equation of multi-body system with quick startup and brake was converted into boundary value problem of differential equation. The transient control algorithm of vibration was put forward, which is the analysis basis for the further research. Theoretical analysis and calculation of numerical examples show that the optimal design method for the multi-body system driving load can decrease the vibration of system with duplication.
文摘With a focus on an industrial multivariable system, two subsystems including the flow and the level outputs are analysed and controlled, which have applicability in both real and academic environments. In such a case, at first, each subsystem is distinctively represented by its model, since the outcomes point out that the chosen models have the same behavior as corresponding ones. Then, the industrial multivariable system and its presentation are achieved in line with the integration of these subsystems, since the interaction between them can not actually be ignored. To analyze the interaction presented, the Gershgorin bands need to be acquired, where the results are used to modify the system parameters to appropriate values. Subsequently, in the view of modeling results, the control concept in two different techniques including sequential loop closing control(SLCC) scheme and diagonal dominance control(DDC) schemes is proposed to implement on the system through the Profibus network, as long as the OPC(OLE for process control) server is utilized to communicate between the control schemes presented and the multivariable system. The real test scenarios are carried out and the corresponding outcomes in their present forms are acquired. In the same way, the proposed control schemes results are compared with each other, where the real consequences verify the validity of them in the field of the presented industrial multivariable system control.
基金Project(50390063) supported by the National Natural Science Foundation of China
文摘A new method was put forward to optimize the position of actuator/sensor of multi-body system with quick startup and brake. Dynamical equation was established for the system with intelligent structure of piezoelectric actuators. According to the property of the modes varying with time, the performance index function was developed based on the optimal configuration principle of energy maximal dissipation, and the relevant optimal model was obtained. According to its characteristic, a float-encoding genetic algorithm, which is efficient, simple and excellent for solving the global-optimal solution of this problem, was adopted. Taking the plane manipulator as an example, the result of numerical calculation shows that, after the actuator/sensor position being optimized, the vibration amplitude of the multi-body system is reduced by 35% compared with that without optimization.
文摘A novel iterative technique, the phase descent search detection was proposed. This technique constrained the solution (PDS) algorithm, for M-ary phase shift keying (M-PSK) symbols to have a unit magnitude and it was based on coordinate descent iterations where coordinates were the unknown symbol phases. The PDS algorithm, together with a descent local search (also implemented as a version of the PDS algorithm), was used multiple times with different initializations in a proposed multiple phase detector; the solution with the minimum cost was then chosen as the final solution. The simulation results show that for highly loaded multiuser scenarios, the proposed technique has a detection performance that is close to the single-user bound. The results also show that the multiple phase detector allows detection in highly overloaded scenarios and it exhibits near-far resistance. In particular, the detector has a performance that is significantly better, and complexity that is significantly lower, than that of the detector based on semi-definite relaxation.
基金Projects(60634020, 61074117) supported by the National Natural Science Foundation of China
文摘In order to solve the decoupling control problem of multivariable system with time delays,a new decoupling Smith control method for multivariable system with time delays was proposed. Firstly,the decoupler based on the adjoint matrix of the multivariable system model with time delays was introduced,and the decoupled models were reduced to first-order plus time delay models by analyzing the amplitude-frequency and phase-frequency characteristics. Secondly,according to the closed-loop characteristic equation of Smith predictor structure,proportion integration (PI) controllers were designed following the principle of pole assignment for Butterworth filter. Finally,using small-gain theorem and Nyquist stability criterion,sufficient and necessary conditions for robust stability were analyzed with multiplicative uncertainties,which could be encountered frequently in practice. The result shows that the method proposed has superiority for response speed and load disturbance rejection performance.
文摘A mathematical approach was proposed to investigate the impact of high penetration of large-scale photovoltaic park(LPP) on small-signal stability of a power network and design of hybrid controller for these units.A systematic procedure was performed to obtain the complete model of a multi-machine power network including LPP.For damping of oscillations focusing on inter-area oscillatory modes,a hybrid controller for LPP was proposed.The performance of the suggested controller was tested using a 16-machine 5-area network.The results indicate that the proposed hybrid controller for LPP provides sufficient damping to the low-frequency modes of power system for a wide range of operating conditions.The method presented in this work effectively indentifies the impact of increased PV penetration and its controller on dynamic performance of multi-machine power network containing LPP.Simulation results demonstrate that the model presented can be used in designing of essential controllers for LPP.
基金Projects(60474029,60774045,60604005) supported by the National Natural Science Foundation of ChinaProject supported by the Graduate Degree Thesis Innovation Foundation of Central South University,China
文摘Consensus problems for discrete-time multi-agent systems were focused on. In order to design effective consensus protocols, which were aimed at ensuring that the concerned states of agents converged to a common value, a new consensus protocol for general discrete-time multi-agent system was proposed based on Lyapunov stability theory. For discrete-time multi-agent systems with desired trajectory, trajectory tracking and formation control problems were studied. The main idea of trajectory tracking problems was to design trajectory controller such that each agent tracked desired trajectory. For a type of formation problem with fixed formation structure, the formation structure set was introduced. According to the formation structure set, each agent can track its individual desired trajectory. Finally, simulations were provided to demonstrate the effectiveness of the theoretical results. The mlmerical results show that the states of agents converge to zero with consensus protocol, which is said to achieve a consensus asymptotically. In addition, through designing appropriate trajectory controllers, the simulation results show that agents converge to the desired trajectory asymptotically and can form different formations.
文摘Call admission control (CAC) and resource reservation (RR) for mobile communication are two important factors that guarantee system efficiency and quality of service (QoS) required for different services in a very scarce resource as the radio spectrum. A new scheme was proposed which extends the concepts of resource sharing and reservations for wideband code division multiple access (WCDMA) systems with a unique feature of soft capacity. Voice and data traffic were considered. The traffic is further classified into handoff and new requests. The reservation thresholds were dynamically adjusted according to the traffic pattern and mobility prediction in order to achieve the maximum channel utilization, while guaranteeing different QoS constraints. The performance of proposed scheme was evaluated using Markov models. New call blocking probability, handoff call dropping probability, and channel utilization were used as benchmarks for the proposed scheme.
基金Project(51005086)supported by the National Natural Science Foundation of ChinaProject(2010MS085)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(DMETKF2013008)supported by the Open Project of the State Key Laboratory of Digital Manufacturing Equipment and Technology,China
文摘A layered modeling method is proposed to resolve the problems resulting from the complexity of the error model of a multi-axis motion control system. In this model, a low level layer can be used as a virtual axis by the high level layer. The first advantage of this model is that the complex error model of a four-axis motion control system can be divided into several simple layers and each layer has different coupling strength to match the real control system. The second advantage lies in the fact that the controller in each layer can be designed specifically for a certain purpose. In this research, a three-layered cross coupling scheme in a four-axis motion control system is proposed to compensate the contouring error of the motion control system. Simulation results show that the maximum contouring error is reduced from 0.208 mm to 0.022 mm and the integration of absolute error is reduced from 0.108 mm to 0.015 mm, which are respectively better than 0.027 mm and 0.037 mm by the traditional method. And in the bottom layer the proposed method also has remarkable ability to achieve high contouring accuracy.
基金Project(51105372) supported by the National Natural Science Foundation of ChinaProject(JC12-03-01) supported by the Research Plan of National University of Defense Technology,China
文摘As the sampling rates of the inner loop and the outer loop of the target tracking control system are different,a typical digital multi-rate control system was formed.If the traditional single-rate design method was applied,the low sampling rate loop will seriously impact the dynamical characteristic of the system.After analyzing and calculating the impact law of the low sampling rate loop to the bandwidth and the stability of the tracking system,a kind of multi-rate control system design method was introduced.Corresponding to the different sampling rates of the inner loop and the outer loop,the multi-rate control strategy was constituted by a high sampling rate sub-controller and a low sampling rate sub-controller.The two sub-controllers were designed separately and connected by means of the sampling rate converter.The low sampling rate controller determined the response rapidity of the system,while the high sampling rate controller applied additionally effective control outputs to the system during a sampling interval of the low sampling rate controller.With the introduced high and low sampling rates sub-controllers,the tracking control system can achieve the same performance as a single-rate controller with high sampling rate,yet it works under a much lower sampling rate.The simulation and experimental results show the effectiveness of the introduced multi-rate control design method.It reduces the settling time by 5 times and the over shoot by 4 times compared with the PID control.
基金Project(61172022) supported by the National Natural Science Foundation of ChinaProject(GDW20151100010) supported by the State Administration of Foreign Experts Affairs of China
文摘Error codes induced by M-ary modulation and modulation selection in network-based control systems are studied.It is the first time the issue of error codes induced by M-ary modulation is addressed in control field.In network-based control systems,error codes induced by noisy channel can significantly decrease the quality of control.To solve this problem,the network-based control system with delay and noisy channel is firstly modeled as an asynchronous dynamic system(ADS).Secondly,conditions of packet with error codes(PEC)loss rate by using M-ary modulation are obtained based on dynamic output feedback scheme.Thirdly,more importantly,the selection principle of M-ary modulation is proposed according to the measured signal-to-noise ratio(SNR)and conditions of PEC loss rate.Finally,system stability is analyzed and controller is designed through Lyapunov function and linear matrix inequality(LMI)scheme,and numerical simulations are made to demonstrate the effectiveness of the proposed scheme.
基金Project(61074074) supported by the National Natural Science Foundation,ChinaProject(KT2012C01J0401) supported by the Group Innovative Fund,China
文摘Many industry processes can be described as Hammerstein-Wiener nonlinear systems. In this work, an improved constrained model predictive control algorithm is presented for Hammerstein-Wiener systems. In the new approach, the maximum and minimum of partial derivative for input and output nonlinearities are solved in the neighbourhood of the equilibrium. And several parameter-dependent Lyapunov functions, each one corresponding to a different vertex of polytopic descriptions models, are introduced to analyze the stability of Hammerstein-Wiener systems, but only one Lyapunov function is utilized to analyze system stability like the traditional method. Consequently, the conservation of the traditional quadratic stability is removed, and the terminal regions are enlarged. Simulation and field trial results show that the proposed algorithm is valid. It has higher control precision and shorter blowing time than the traditional approach.
基金Project(51005115) supported by the National Natural Science Foundation of ChinaProject(KF11201) supported by the Science Fund of State Key Laboratory of Automotive Safety and Energy,ChinaProject(201105) supported by the Visiting Scholar Foundation of the State Key Laboratory of Mechanical Transmission in Chongqing University,China
文摘A novel active steering system with force and displacement coupled control(the novel AFS system) was introduced,which has functions of both the active steering and electric power steering.Based on the model of the novel AFS system and the vehicle three-degree of freedom system,the concept and quantitative formulas of the novel AFS system steering performance were proposed.The steering road feel and steering portability were set as the optimizing targets with the steering stability and steering portability as the constraint conditions.According to the features of constrained optimization of multi-variable function,a multi-variable genetic algorithm for the system parameter optimization was designed.The simulation results show that based on parametric optimization of the multi-objective genetic algorithm,the novel AFS system can improve the steering road feel,steering portability and steering stability,thus the optimization method can provide a theoretical basis for the design and optimization of the novel AFS system.