期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别方法
1
作者
罗洋
何自芬
+1 位作者
张印辉
陈光晨
《农业机械学报》
北大核心
2025年第1期377-387,共11页
作物叶片等级和病害的快速准确识别对开发农业智能设备以促进农产品精细化管理有着重要意义。针对作物叶片等级和病害识别准确率低、成本高等问题,提出主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别算法(Crop leaf gra...
作物叶片等级和病害的快速准确识别对开发农业智能设备以促进农产品精细化管理有着重要意义。针对作物叶片等级和病害识别准确率低、成本高等问题,提出主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别算法(Crop leaf grade and disease recognition network,CLGDRNet)。首先,CLGDRNet采用CSPNet、GhostNet、ShuffleNet构建特征提取主干网络,同时将CSPNet、GhostNet、ShuffleNet所提取的特征信息进行共享以达到信息互补的目的;其次,设计多感受野特征自适应融合模块(Multi-receptive field feature adaptive fusion module,MRFA),将不同感受野特征图进行自适应加权融合,在增强模型局部感受野的同时突出有效通道信息;最后,提出一种深层梯度跨空间学习高效多尺度注意力模块(Efficient multi-scale attention mechanism with deep gradient cross-space learning,EMAD),将EMAD嵌入模型的颈部以获取深层梯度信息和目标坐标信息并跨空间融合不同尺度的上下文信息,使模型能够对深层特征图产生更精确的像素级关注。实验结果表明,CLGDRNet在初烤烟叶分级数据集(Tobacco leaf grading dataset,TLGD)上识别精度mAP@0.5和mAP@0.5:0.95分别达到85.0%、76.1%,在苹果叶病害数据集(Apple leaf disease dataset,ALDD)上识别精度mAP@0.5和mAP@0.5:0.95分别达到97.6%、74.2%。相较于多种先进目标检测算法,CLGDRNet具有更高的识别精度,可为高精度作物叶片等级和病害识别提供关键技术支撑。
展开更多
关键词
作物叶片等级
作物叶片病害
目标检测
信息共享
多感受野特征融合
在线阅读
下载PDF
职称材料
多感受野特征自适应融合及动态损失调整的初烤烟叶等级检测
被引量:
1
2
作者
何自芬
罗洋
+3 位作者
张印辉
陈光晨
陈东东
徐林
《光学精密工程》
EI
CAS
CSCD
北大核心
2024年第2期301-316,共16页
初烤烟叶等级的快速准确检测对开发烟叶智能分级设备以促进农产品精细化管理有着重要意义。针对相似度较高但等级不同的初烤烟叶难以区分的问题,本文提出多感受野特征自适应融合及动态损失调整的初烤烟叶等级检测网络(Flue-cured Tobacc...
初烤烟叶等级的快速准确检测对开发烟叶智能分级设备以促进农产品精细化管理有着重要意义。针对相似度较高但等级不同的初烤烟叶难以区分的问题,本文提出多感受野特征自适应融合及动态损失调整的初烤烟叶等级检测网络(Flue-cured Tobacco Leaf Grade Detection Network,FTGDNet)。首先,FTGDNet采用CSPNet作为特征提取主干网络,采用GhostNet作为辅助特征提取网络以增强模型的特征提取能力;其次,在主干网络末端嵌入显式视觉中心瓶颈模块(Explicit Visual Center Bottleneck module,EVCB)以实现全局特征信息与局部细节特征信息融合;然后,构建多感受野特征自适应融合模块(Multi-Receptive Field Feature Adaptive Fusion module,MRFA_d),利用注意力特征融合机制(Attention Feature Fusion,AFF)将不同感受野特征图进行自适应加权融合,在增强模型局部感受野的同时突出有效通道信息;最后,设计了一种新的定位损失函数(More Complete IoU Loss,MCIoU_Loss),结合预测框与真实框面积损失以解决在回归定位过程中二者宽高比相等且中心点重合时CIoU_Loss性能退化导致定位精度下降问题,此外,引入矩形相似度衰减系数在训练过程中对真实框与预测框的相似度判别项进行动态调整,加快模型拟合。实验结果表明,FTGDNet对十个等级的初烤烟叶的验证精度达到90.0%,测试精度达到87.4%,且推理时间仅为12.6 ms。相较于多种先进目标检测算法,FTGDNet具有更高的检测精度和更快的检测速度,可为高精度初烤烟叶等级检测提供关键技术支撑。
展开更多
关键词
初烤烟叶
目标检测
多感受野特征融合
动态损失调整
在线阅读
下载PDF
职称材料
题名
主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别方法
1
作者
罗洋
何自芬
张印辉
陈光晨
机构
红塔烟草(集团)有限责任公司昭通卷烟厂
昆明理工大学机电工程学院
出处
《农业机械学报》
北大核心
2025年第1期377-387,共11页
基金
国家自然科学基金项目(62171206、62061022)
中国烟草总公司云南省公司烟叶智能分级项目(HZ2021K0462A)。
文摘
作物叶片等级和病害的快速准确识别对开发农业智能设备以促进农产品精细化管理有着重要意义。针对作物叶片等级和病害识别准确率低、成本高等问题,提出主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别算法(Crop leaf grade and disease recognition network,CLGDRNet)。首先,CLGDRNet采用CSPNet、GhostNet、ShuffleNet构建特征提取主干网络,同时将CSPNet、GhostNet、ShuffleNet所提取的特征信息进行共享以达到信息互补的目的;其次,设计多感受野特征自适应融合模块(Multi-receptive field feature adaptive fusion module,MRFA),将不同感受野特征图进行自适应加权融合,在增强模型局部感受野的同时突出有效通道信息;最后,提出一种深层梯度跨空间学习高效多尺度注意力模块(Efficient multi-scale attention mechanism with deep gradient cross-space learning,EMAD),将EMAD嵌入模型的颈部以获取深层梯度信息和目标坐标信息并跨空间融合不同尺度的上下文信息,使模型能够对深层特征图产生更精确的像素级关注。实验结果表明,CLGDRNet在初烤烟叶分级数据集(Tobacco leaf grading dataset,TLGD)上识别精度mAP@0.5和mAP@0.5:0.95分别达到85.0%、76.1%,在苹果叶病害数据集(Apple leaf disease dataset,ALDD)上识别精度mAP@0.5和mAP@0.5:0.95分别达到97.6%、74.2%。相较于多种先进目标检测算法,CLGDRNet具有更高的识别精度,可为高精度作物叶片等级和病害识别提供关键技术支撑。
关键词
作物叶片等级
作物叶片病害
目标检测
信息共享
多感受野特征融合
Keywords
crop leaf grade
crop leaf disease
object detection
information sharing
multi-receptive field feature fusion
分类号
TP391 [自动化与计算机技术—计算机应用技术]
S24 [农业科学—农业电气化与自动化]
在线阅读
下载PDF
职称材料
题名
多感受野特征自适应融合及动态损失调整的初烤烟叶等级检测
被引量:
1
2
作者
何自芬
罗洋
张印辉
陈光晨
陈东东
徐林
机构
昆明理工大学机电工程学院
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2024年第2期301-316,共16页
基金
国家自然科学基金资助项目(No.62171206,No.62061022)
中国烟草云南分公司烟叶智能分级项目资助(No.HZ2021K0462A)。
文摘
初烤烟叶等级的快速准确检测对开发烟叶智能分级设备以促进农产品精细化管理有着重要意义。针对相似度较高但等级不同的初烤烟叶难以区分的问题,本文提出多感受野特征自适应融合及动态损失调整的初烤烟叶等级检测网络(Flue-cured Tobacco Leaf Grade Detection Network,FTGDNet)。首先,FTGDNet采用CSPNet作为特征提取主干网络,采用GhostNet作为辅助特征提取网络以增强模型的特征提取能力;其次,在主干网络末端嵌入显式视觉中心瓶颈模块(Explicit Visual Center Bottleneck module,EVCB)以实现全局特征信息与局部细节特征信息融合;然后,构建多感受野特征自适应融合模块(Multi-Receptive Field Feature Adaptive Fusion module,MRFA_d),利用注意力特征融合机制(Attention Feature Fusion,AFF)将不同感受野特征图进行自适应加权融合,在增强模型局部感受野的同时突出有效通道信息;最后,设计了一种新的定位损失函数(More Complete IoU Loss,MCIoU_Loss),结合预测框与真实框面积损失以解决在回归定位过程中二者宽高比相等且中心点重合时CIoU_Loss性能退化导致定位精度下降问题,此外,引入矩形相似度衰减系数在训练过程中对真实框与预测框的相似度判别项进行动态调整,加快模型拟合。实验结果表明,FTGDNet对十个等级的初烤烟叶的验证精度达到90.0%,测试精度达到87.4%,且推理时间仅为12.6 ms。相较于多种先进目标检测算法,FTGDNet具有更高的检测精度和更快的检测速度,可为高精度初烤烟叶等级检测提供关键技术支撑。
关键词
初烤烟叶
目标检测
多感受野特征融合
动态损失调整
Keywords
flue-cured tobacco leaf
object detection
multi receptive field feature fusion
dynamic loss adjustment
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
S24 [农业科学—农业电气化与自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
主干信息共享与多感受野特征自适应融合的作物叶片等级和病害识别方法
罗洋
何自芬
张印辉
陈光晨
《农业机械学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
多感受野特征自适应融合及动态损失调整的初烤烟叶等级检测
何自芬
罗洋
张印辉
陈光晨
陈东东
徐林
《光学精密工程》
EI
CAS
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部