期刊文献+
共找到44篇文章
< 1 2 3 >
每页显示 20 50 100
基于多层感知机模型的稻麦双变量精准施肥机排肥策略 被引量:1
1
作者 施印炎 辛亚鹏 +3 位作者 汪小旵 郑恩来 沈成 张昭 《农业工程学报》 北大核心 2025年第10期51-60,共10页
变量施肥是实施精准农业的重要技术途径,转速、开度双重调节的外槽轮式变量施肥方式是稻麦轮作区作物施肥的典型方式。针对目前变量施肥机控制系统响应速度慢、预测模型不准确,引起排肥量误差大、成效不显著的问题,该研究基于自主研制... 变量施肥是实施精准农业的重要技术途径,转速、开度双重调节的外槽轮式变量施肥方式是稻麦轮作区作物施肥的典型方式。针对目前变量施肥机控制系统响应速度慢、预测模型不准确,引起排肥量误差大、成效不显著的问题,该研究基于自主研制的稻麦双变量精准施肥机,运用数理统计和机器学习方法,提出一种基于多层感知人工神经网络的排肥量预测模型,并对其有效性和适用性进行验证。通过分析莱维飞行算法(levy flight algorithm,LFA)、粒子群算法(particle swarm optimization,PSO)和多层感知器神经网络模型(multilayer perceptron,MLP)的算法机理,结合开度-转速双变量排肥方法,构建LFA-PSO-MLP(LPM)排肥量预测模型;引入开度-转速-排肥量关系模型,利用归一化、正则化等方式改善算法结构,开展参数优化和模型训练,并对比MLP和PSO-MLP模型,得到LFA-PSO-MLP排肥量最优预测模型;构建ILPM(inverse LFA-PSO-MLP)预测模型作为施肥机的神经网络模型,根据目标排肥量快速计算所需开度和转速。试验结果表明:LFA-PSO-MLP模型在拟合50次左右收敛,拟合500次后的R2值为0.999,平均相对误差(average relative error,ARE)为1.83%,均优于其他两种模型。LPM验证集验证试验中,预测值与验证值的平均相对误差为2.47%,田间试验的预测值与实测值的平均相对误差为3.49%;ILPM验证试验中,转速预测的平均相对误差为1.82%,目标排肥量与实际排肥量的最大相对误差为7.26%,平均相对误差为6.09%,施肥机排肥效果较好。所提模型能够在保证排肥量预测精度的同时提升运算效率,实现快速、精准、高效的变量施肥,改善生态效益和经济效益。 展开更多
关键词 算法 粒子群 莱维飞行 多层感知神经网络 双变量排肥策略
在线阅读 下载PDF
基于多层感知器神经元的空间柔性机器人位置跟踪控制 被引量:2
2
作者 张文辉 马静 高九州 《空间控制技术与应用》 2011年第1期59-62,共4页
针对基体位置及姿态均不受控的自由漂浮柔性空间机器人轨迹跟踪问题,提出了一种前馈多层感知器(MLP)神经网络控制策略.建立了末端柔性的自由漂浮基机器人的耦合动力学模型,再利用MLP神经网络良好的逼近能力来自适应补偿非线性柔性臂的... 针对基体位置及姿态均不受控的自由漂浮柔性空间机器人轨迹跟踪问题,提出了一种前馈多层感知器(MLP)神经网络控制策略.建立了末端柔性的自由漂浮基机器人的耦合动力学模型,再利用MLP神经网络良好的逼近能力来自适应补偿非线性柔性臂的逆动力学模型,其误差代价函数由PID控制器提供,权重及阀值的调整采用改进的BP反传算法.最后通过仿真比较详细分析了所提方案的工作机理及对非线性强耦合系统控制的有效性. 展开更多
关键词 多层感知神经网络 逆模控制 PID控制 BP算法
在线阅读 下载PDF
基于多层感知器神经网络的小微企业信贷风险研究 被引量:7
3
作者 周驷华 王素南 《现代管理科学》 CSSCI 北大核心 2015年第9期45-48,共4页
文章以多层感知器神经网络算法为基础,对某小贷公司的小微企业信贷数据库中的信贷记录进行了信贷评估,并将该结果与决策向量机、线性判别、二次判别和逻辑回归等数据挖掘方法进行了比较。分析结果表明,从总体上看,多重感知器神经网络算... 文章以多层感知器神经网络算法为基础,对某小贷公司的小微企业信贷数据库中的信贷记录进行了信贷评估,并将该结果与决策向量机、线性判别、二次判别和逻辑回归等数据挖掘方法进行了比较。分析结果表明,从总体上看,多重感知器神经网络算法优于传统的基于参数的分类方法,即多层感知器神经网络算法拥有相对较高的ROC曲线下面积和较低的预期错误分类成本。更进一步,在研究所采用的4种MLP算法中,基于BFGS Quasi-Newton训练算法的MLP表现最为出色,可以作为金融机构进行小微信贷风险评估的辅助决策模型。 展开更多
关键词 多层感知神经网络 小微企业 信贷评估 数据挖掘 辅助决策模型
在线阅读 下载PDF
基于径向基—多层感知器神经网络联合的复杂岩相智能识别与表征 被引量:14
4
作者 姜世一 孙盼科 +7 位作者 张林 贾浪波 何太洪 徐怀民 艾贝贝 张何锋 饶华文 丁遥 《天然气工业》 EI CAS CSCD 北大核心 2022年第9期47-62,共16页
苏里格气田东二区二叠系石盒子组盒8段(以下简称盒8段)为典型的河流相致密砂岩储层,其强非均质性及复杂的储层结构导致该区面临“甜点”储层优选困难等关键技术瓶颈。为此,在分析盒8段储层岩相类型及组合特征、岩相约束下测井数据特征... 苏里格气田东二区二叠系石盒子组盒8段(以下简称盒8段)为典型的河流相致密砂岩储层,其强非均质性及复杂的储层结构导致该区面临“甜点”储层优选困难等关键技术瓶颈。为此,在分析盒8段储层岩相类型及组合特征、岩相约束下测井数据特征的基础上,建立了一种契合岩相及其组合特征、测井数据特征、人工智能算法原理的径向基—多层感知器神经网络联合模型,并开展了储层岩相的精确识别与表征研究。研究结果表明:(1)盒8段发育块状层理砾岩相、槽状交错层理粗砂岩相、板状交错层理粗砂岩相、板状交错层理中砂岩相、平行层理中砂岩相、交错层理细砂岩相、波状层理粉砂岩相、块状层理泥岩相8种岩相类型;(2)盒8上亚段曲流河相储层岩相密度偏小、岩相频率偏高、对应测井数据分布较分散,盒8下亚段辫状河相储层岩相密度偏大、岩相频率偏低、对应测井数据分布较集中;(3)建立的径向基—多层感知器神经网络联合模型识别准确率可达89.06%,相较于单一神经网络模型、交会图、主成分分析和决策树等方法识别准确率明显提高。结论认为,建立的径向基—多层感知器神经网络联合模型不仅克服了现有岩相识别方法准确率低且难以推广的缺陷,而且对实现河流相强非均质性致密砂岩储层高效开发具有重要意义。 展开更多
关键词 苏里格气田东二区 盒8段 河流相 致密砂岩储 岩相类型 径向基—多层感知神经网络 智能化 岩相识别
在线阅读 下载PDF
Koopman原理内嵌MLP神经网络模型驱动的电力系统非线性振荡特征分析方法 被引量:1
5
作者 周一辰 李金泽 +3 位作者 李永刚 陈鹏伟 郭通 孙浩潮 《电力自动化设备》 EI CSCD 北大核心 2024年第10期132-139,共8页
针对电力系统非线性动态特性表征与物理机理融合不清晰、精度低的问题,提出了一种Koopman原理内嵌多层感知机(MLP)神经网络模型驱动的电力系统非线性特性表征与分析方法。阐明了Koopman算子的基本原理,分析了Koopman算子在非线性系统时... 针对电力系统非线性动态特性表征与物理机理融合不清晰、精度低的问题,提出了一种Koopman原理内嵌多层感知机(MLP)神经网络模型驱动的电力系统非线性特性表征与分析方法。阐明了Koopman算子的基本原理,分析了Koopman算子在非线性系统时序演化中的作用。采用MLP神经网络构建编码、解码映射,进而形成Koopman原理内嵌的神经网络深度学习模型,通过深度学习实现非线性系统“编码映射-线性演化-解码映射”3种结构的演化逼近。分析了将所提方法应用于电力系统动态特性分析的物理机理,建立了所提方法的求解与应用流程。通过单机与4机系统算例对所提方法进行对比验证,结果表明所提方法可以精确表征平衡点稳定域内的系统动态过程,可用于电力系统非线性振荡动态特性解析。 展开更多
关键词 电力系统 非线性振荡 Koopman算子理论 多层感知神经网络 科学人工智能
在线阅读 下载PDF
基于蜂群算法和神经网络的通信调制识别方法 被引量:4
6
作者 杨发权 李赞 +2 位作者 李红艳 郝本建 潘忠显 《系统工程与电子技术》 EI CSCD 北大核心 2013年第10期2186-2191,共6页
针对现有基于误差反向传播算法的多层感知器神经网络分类器在信号识别中存在收敛速度缓慢、出现假饱和现象等问题,采用蜂群算法提取信号的联合特征模块,提出快速支持、超级自适应误差反向传播、共轭梯度3种不同算法分别应用于多层感知... 针对现有基于误差反向传播算法的多层感知器神经网络分类器在信号识别中存在收敛速度缓慢、出现假饱和现象等问题,采用蜂群算法提取信号的联合特征模块,提出快速支持、超级自适应误差反向传播、共轭梯度3种不同算法分别应用于多层感知器神经网络分类器,实现对通信信号的自动识别。所提算法和误差反向传播算法相比有更高的识别率。仿真结果表明,所提算法能够克服误差反向传播算法的缺陷,在隐藏层神经元仅为20个、信噪比为4dB条件下,3种算法的识别率均高于95%,且系统易于实现,在信号识别中具有广泛的应用前景。 展开更多
关键词 蜂群算法 联合特征模块 多层感知神经网络 调制识别
在线阅读 下载PDF
电液伺服系统的神经网络建模方法研究 被引量:3
7
作者 童仲志 邢宗义 +2 位作者 张媛 高强 贾利民 《高技术通讯》 EI CAS CSCD 北大核心 2009年第6期620-626,共7页
针对电液伺服系统固有的流量-压力特性等非线性因素使得采用传递函数等传统方法难以获得电液伺服系统的精确模型的问题,详细研究了电液伺服系统的神经网络建模方法。研究了两种最常见的神经网络,即多层感知器神经网络和径向基函数神经网... 针对电液伺服系统固有的流量-压力特性等非线性因素使得采用传递函数等传统方法难以获得电液伺服系统的精确模型的问题,详细研究了电液伺服系统的神经网络建模方法。研究了两种最常见的神经网络,即多层感知器神经网络和径向基函数神经网络,采用5种典型学习算法构造了3种多层感知器神经网络和2种径向基函数神经网络,并结合自动定深电液伺服系统的工程实例,详细分析了这5种神经网络在电液伺服系统中的建模性能。研究结果表明,采用正交最小二乘算法的径向基函数神经网络最适合电液伺服系统的建模。 展开更多
关键词 电液伺服系统 多层感知神经网络(MLPNN) 径向基函数神经网络(RBFNN) 建模
在线阅读 下载PDF
基于HJ-1数据和V-I-S模型的城市不透水层变化分析 被引量:2
8
作者 单丹丹 杜培军 +1 位作者 夏俊士 柳思聪 《国土资源遥感》 CSCD 2011年第4期92-99,共8页
选择2008年和2010年徐州市城区的HJ-1A/1B多光谱遥感图像,利用线性光谱混合模型(LSMM)、多层感知器(MLP)神经网络和自组织映射(SOM)神经网络3种混合像元分解方法,基于V-I-S(植被-不透水层-土壤)模型提取城市不透水层。对3种方法的精度... 选择2008年和2010年徐州市城区的HJ-1A/1B多光谱遥感图像,利用线性光谱混合模型(LSMM)、多层感知器(MLP)神经网络和自组织映射(SOM)神经网络3种混合像元分解方法,基于V-I-S(植被-不透水层-土壤)模型提取城市不透水层。对3种方法的精度分析对比表明,MLP方法优于其他两种方法,能够比较清晰地反映出徐州市城市化的发展。对两个时相多光谱影像提取的不透水层信息的分析表明,徐州市近两年的发展中心已逐渐向城市边缘地带扩展,其主要原因在于经济的迅速增长和城市化进程的加速发展。 展开更多
关键词 环境与灾害监测预报小卫星 不透水 线性光谱混合模型 多层感知神经网络 自组织映射神经网络
在线阅读 下载PDF
基于MLP神经网络的数控铣床几何误差补偿方法 被引量:5
9
作者 于海祥 《机械设计与制造》 北大核心 2017年第8期140-143,共4页
针对三轴数控铣床加工工件的几何误差问题,提出一种基于多层感知器(MLP)神经网络的误差补偿方法。首先,设定铣床沿X轴和Y轴方向对工件进行铣削加工,通过3D坐标测量机测量刀头在Z轴上的定位误差数据。然后,利用这些数据来训练MLP神经网... 针对三轴数控铣床加工工件的几何误差问题,提出一种基于多层感知器(MLP)神经网络的误差补偿方法。首先,设定铣床沿X轴和Y轴方向对工件进行铣削加工,通过3D坐标测量机测量刀头在Z轴上的定位误差数据。然后,利用这些数据来训练MLP神经网络模型,拟合出三维的误差曲面。最后,根据获得的误差曲面,对铣床加工时的刀头坐标进行实时校正,以此提高加工精度。实验结果表明,提出的方法能够对机床加工误差进行精确地补偿,具有有效性和可行性。 展开更多
关键词 数控机床 几何误差补偿 多层感知神经网络 误差曲面拟合
在线阅读 下载PDF
基于多特征因子的路用集料粒径计算神经网络模型 被引量:6
10
作者 裴莉莉 孙朝云 +3 位作者 户媛姣 李伟 高尧 郝雪丽 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第6期77-86,共10页
在道路施工及养护过程中,高效、准确地测量沥青混合料中的集料级配是保证混合料骨架结构稳定及施工质量的重要环节。针对基于单一几何模型应用在粗集料颗粒分档时,存在粒径计算不准确、无法满足施工要求的问题,文中提出一种基于多特征... 在道路施工及养护过程中,高效、准确地测量沥青混合料中的集料级配是保证混合料骨架结构稳定及施工质量的重要环节。针对基于单一几何模型应用在粗集料颗粒分档时,存在粒径计算不准确、无法满足施工要求的问题,文中提出一种基于多特征因子的路用集料粒径计算神经网络模型,实现对集料颗粒粒径的准确计算。首先,对采集到的集料颗粒图像进行几何特征提取,并对提取到的特征数据进行数据清洗和归一化等处理,建立样本数据集;然后通过相关性分析,提取出与集料粒径相关性较强的特征因子;最后,构建多层感知机(MLP)神经网络模型对数据集进行训练,并采用敏感性分析得到用于表征集料粒径的重要特征权重,实现对集料粒径的准确计算。结果表明,文中提出的集料粒径计算方法与卡尺法测量的结果拟合精度较高(相关系数R2=0.91),与二阶矩、等效椭圆等传统几何模型方法相比不仅明显提高了精度,而且可以实现快速虚拟筛分,显著提升后续的筛分效率。 展开更多
关键词 集料粒径 多特征因子 几何特征 相关性分析 虚拟筛分 多层感知神经网络
在线阅读 下载PDF
人工神经网络和遗传算法在微带交指电容器设计中的应用 被引量:6
11
作者 张欣 陈如山 《微波学报》 CSCD 北大核心 2003年第4期54-57,66,共5页
将神经网络技术 (ANN)与遗传算法 (GA)相结合对交指电容器 (IDC)进行了分析与设计。采用多层感知器神经网络 (MLPNN)建立了交指电容器的模型 ,并利用遗传算法的全局搜索能力根据实际需要优化设计交指电容器的结构。模型训练样本的S参数... 将神经网络技术 (ANN)与遗传算法 (GA)相结合对交指电容器 (IDC)进行了分析与设计。采用多层感知器神经网络 (MLPNN)建立了交指电容器的模型 ,并利用遗传算法的全局搜索能力根据实际需要优化设计交指电容器的结构。模型训练样本的S参数由时域有限差分 (FDTD)方法得到。结果证明该方法具有较高的准确性 。 展开更多
关键词 人工神经网络 遗传算法 交指电容器 多层感知神经网络 时域有限差分 微波电路 CAD
在线阅读 下载PDF
基于BAS-BP神经网络的多应力加速寿命试验预测方法 被引量:6
12
作者 葛峰 韩建立 高松 《兵工自动化》 2020年第6期5-9,41,共6页
为解决多应力条件下加速寿命试验中建立复合加速模型困难、模型参数难以求解以及建模过程中通常忽略应力间耦合作用的问题,根据天牛须搜索建立改进的BP神经网络模型。使用多应力加速寿命试验中收集的4组应力水平的失效数据对BAS-BP神经... 为解决多应力条件下加速寿命试验中建立复合加速模型困难、模型参数难以求解以及建模过程中通常忽略应力间耦合作用的问题,根据天牛须搜索建立改进的BP神经网络模型。使用多应力加速寿命试验中收集的4组应力水平的失效数据对BAS-BP神经网络模型进行训练,对第5组应力水平下的可靠度与失效时间进行预测。利用平均相对误差、拟合优度2个参数对模型的预测结果进行评价,并与BP神经网络的预测结果进行对比。结果表明,BAS-BP神经网络具有更好的准确性及鲁棒性。 展开更多
关键词 天牛须算法 多层感知神经网络 多应力加速模型 预测方法
在线阅读 下载PDF
SSA-MLP模型在岩质边坡稳定性预测中的应用 被引量:6
13
作者 侯克鹏 包广拓 孙华芬 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1795-1803,共9页
岩质边坡的力学参数量化及稳定性分析对岩质边坡灾害的防治具有重要意义。Hoek-Brown(H B)准则是一种用于确定岩体力学参数的经典方法,能反映出边坡岩体变形和位移的非线性破坏特征。在此基础上,首先,提出一种麻雀搜索算法(Sparrow Sear... 岩质边坡的力学参数量化及稳定性分析对岩质边坡灾害的防治具有重要意义。Hoek-Brown(H B)准则是一种用于确定岩体力学参数的经典方法,能反映出边坡岩体变形和位移的非线性破坏特征。在此基础上,首先,提出一种麻雀搜索算法(Sparrow Search Algorithm,SSA)改进多层感知器(Multi-Layer Perceptron,MLP)的神经网络模型,并用于边坡稳定性预测、指标敏感性分析及参数反演。其次,将收集的1085组岩质边坡的几何参数和H B准则参数等作为输入变量,极限平衡理论Bishop法求解的安全系数作为输出变量,对SSA MLP模型进行训练学习和性能评估。最后,将该模型运用于25个边坡实例,验证模型的有效性。结果显示,该模型收敛速度快、精度高,为边坡稳定性分析和参数量化提供了一种新思路。 展开更多
关键词 安全工程 边坡稳定性 HOEK-BROWN准则 多层感知器(MLP)神经网络 麻雀搜索算法 参数反演
在线阅读 下载PDF
基于深度学习的小麦籽粒锌含量预测及安全利用分区
14
作者 李清彩 陈娟 +3 位作者 赵庆令 蔡图 韩文撑 褚琳琳 《农业环境科学学报》 CAS CSCD 北大核心 2024年第10期2248-2259,共12页
为实现对小麦籽粒Zn含量的精准预测及安全利用分区,以济宁南部小麦种植区为研究对象,采集并测定了小麦籽粒中Zn及根际土壤样品中SiO_(2)、Fe_(2)O_(3)、MgO、CaO、Na_(2)O、K_(2)O、OrgC、P、N、S、Zn和pH等12种理化指标的含量,系统研... 为实现对小麦籽粒Zn含量的精准预测及安全利用分区,以济宁南部小麦种植区为研究对象,采集并测定了小麦籽粒中Zn及根际土壤样品中SiO_(2)、Fe_(2)O_(3)、MgO、CaO、Na_(2)O、K_(2)O、OrgC、P、N、S、Zn和pH等12种理化指标的含量,系统研究了小麦籽粒中Zn含量及其根际土壤理化指标含量特征,利用多层感知机神经网络和随机森林模型对小麦籽粒Zn含量变化特征进行预测,选择最优模型预测出济宁南部区域小麦籽粒Zn含量,并结合GIS技术划分了贫锌、缺锌、足锌和富锌农田。结果表明:济宁南部区域小麦籽粒中Zn含量平均值(39.7 mg·kg^(-1))与富锌小麦籽粒推荐值基本持平,超出黄淮麦区小麦籽粒Zn平均含量1.32倍;经相关分析和聚类分析得出,小麦籽粒Zn与根际土壤理化指标之间相互作用、相互耦合,存在着较为复杂的非线性关系;多层感知机神经网络预测模型的R^(2)(0.999)、RMSE(0.194)和MAE(0.146)等评价指标均优于随机森林模型;根际土壤中P、pH、OrgC和N指标是影响多层感知机神经网络预测相对重要的特征变量;研究区以足锌农田和缺锌农田为主,面积占比分别为57.47%和33.97%,谨慎利用贫锌区和安全利用富锌区农田面积占比分别为6.05%和2.51%。通过深度学习与农业地质相结合,利用多层感知机神经网络实现了通过简单土壤理化指标精准预测小麦籽粒锌含量。 展开更多
关键词 深度学习 多层感知神经网络 随机森林 小麦 安全利用
在线阅读 下载PDF
红外光谱结合贝叶斯判别对洗发用品的分类研究 被引量:1
15
作者 姜红 周贯旭 +1 位作者 周飞翔 郝小辉 《分析科学学报》 CAS CSCD 北大核心 2024年第1期75-80,共6页
建立一种基于红外光谱的快速无损地检验洗发用品的分析方法。利用傅里叶红外光谱对60个常见的洗发用品样品进行检验,分别采用Savitzky-Golay(S-G)平滑、快速傅里叶变换(FFT)、降噪等方法对光谱数据进行预处理,并结合主成分分析法对光谱... 建立一种基于红外光谱的快速无损地检验洗发用品的分析方法。利用傅里叶红外光谱对60个常见的洗发用品样品进行检验,分别采用Savitzky-Golay(S-G)平滑、快速傅里叶变换(FFT)、降噪等方法对光谱数据进行预处理,并结合主成分分析法对光谱数据进行降维处理。同时建立多层感知器神经网络和贝叶斯判别分析两种分类模型,对光谱数据进行分析验证。多层感知器神经网络对原始数据、经过S-G平滑、FFT、降噪后的分类准确率分别为86.67%、88.33%、80%、90%,贝叶斯判别的分类准确率为83.33%、85%、83.33%、95%。结果显示,降噪处理效果较佳,贝叶斯判别具有更高的准确率。该方法重现性好、样品用量少、无损样品,可为洗发用品类物证鉴定提供科学依据。 展开更多
关键词 傅里叶变换红外光谱 洗发用品 主成分分析 多层感知神经网络 贝叶斯判别分析
在线阅读 下载PDF
基于气味信息和活性成分的三七产地溯源研究
16
作者 闫莎莎 李雪 +8 位作者 洪晶 张娅俐 靳冬武 张福梅 宋礼 罗丽 田晓静 张希 乔丽萍 《中成药》 CAS CSCD 北大核心 2024年第5期1740-1745,共6页
目的基于气味信息和活性成分对三七Panax notoginseng(Burk.)F.H.Chen进行产地溯源研究。方法采集4个产地的三七样品,测定其活性成分(人参皂苷R1、Rg1、Rb1、Rd)和气味信息并进行多元统计分析和神经网络分析。结果方差分析结果表明,三... 目的基于气味信息和活性成分对三七Panax notoginseng(Burk.)F.H.Chen进行产地溯源研究。方法采集4个产地的三七样品,测定其活性成分(人参皂苷R1、Rg1、Rb1、Rd)和气味信息并进行多元统计分析和神经网络分析。结果方差分析结果表明,三七产地对其皂苷含量、电子鼻传感器特征响应信号影响显著;典则判别分析和聚类分析可实现三七产地的判别,多层感知器神经网络分析对三七产地的判别准确率均在87%以上;结合偏最小二乘回归分析、多元线性回归分析、多层感知器神经网络分析构建皂苷含量的预测模型,气味信息与皂苷含量间存在相关关系(0.42<r<0.95)。结论基于电子鼻和高效液相色谱法对三七产地判别具有可行性,可为三七开发利用、产地追溯、真伪鉴定提供科学依据。 展开更多
关键词 三七 电子鼻 高效液相色谱 多元统计 多层感知神经网络分析
在线阅读 下载PDF
基于融合TC-WREM模型的热带气旋大风半径估算研究
17
作者 周必高 鲁小琴 +4 位作者 吴贤笃 仇欣 谢海华 朱忠勇 郑建琴 《热带气象学报》 CSCD 北大核心 2024年第5期736-744,共9页
利用2001—2020年美国联合台风警报中心(JTWC)热带气旋(Tropical Cyclone,TC)最佳资料数据集和静止气象卫星云图,建立了基于多层感知器神经网络模型(Multi-Layer Perceptron,MLP)和卷积神经网络(Convolutional Neural Network,CNN)融合... 利用2001—2020年美国联合台风警报中心(JTWC)热带气旋(Tropical Cyclone,TC)最佳资料数据集和静止气象卫星云图,建立了基于多层感知器神经网络模型(Multi-Layer Perceptron,MLP)和卷积神经网络(Convolutional Neural Network,CNN)融合的TC大风半径估算模型(TC Wind Radii Estimation Model,TC-WREM)。该模型利用MLP和CNN分别对TC属性数据和卫星云图中与TC大风半径相关联的核心特征进行预提取,最终通过融合TC-WREM模型开展大风半径估算。融合的TC-WREM模型能实现对TC属性数据和卫星云图底层特征的深度客观挖掘,较单独的MLP和CNN模型的估算误差降低7%~24%。以TC近地面8级大风半径(R8)估算为例,针对2021年台风“烟花”的独立样本估算检验显示分象限R8估算平均绝对误差(Mean Absolute Error,MAE)分别为39、33、40和51 km,均值为41 km,误差中位值约40 km,优于业务估算精度(为大风半径的25%~40%)及西北太平洋和大西洋同类研究估算结果。由于融合TC-WREM模型的输入为易获取的TC属性数据和静止气象卫星云图,因此该模型易于在业务中进行推广,从而可改善国内TC大风半径估算模型缺乏的现状。 展开更多
关键词 热带气旋 大风半径估算 卷积神经网络模型 多层感知神经网络模型 融合TC-WREM模型 西北太平洋
在线阅读 下载PDF
发音错误检测中基于多数据流的Tandem特征方法 被引量:1
18
作者 袁桦 蔡猛 +2 位作者 赵军红 张卫强 刘加 《计算机应用》 CSCD 北大核心 2014年第6期1694-1698,共5页
针对发音错误检测中标注的发音数据资源有限的情况,提出在Tandem系统框架下利用其他数据来提高特征的区分性。以中国人的英语发音为研究对象,选取了相对容易获取的无校正发音数据、母语普通话和母语英语作为辅助数据,实验结果表明,这几... 针对发音错误检测中标注的发音数据资源有限的情况,提出在Tandem系统框架下利用其他数据来提高特征的区分性。以中国人的英语发音为研究对象,选取了相对容易获取的无校正发音数据、母语普通话和母语英语作为辅助数据,实验结果表明,这几种数据都能够有效地提高系统性能,其中无校正数据表现出最好的性能。同时,比较了不同的扩展帧长,以多层神经感知(MLP)和深度神经网络(DNN)作为典型的浅层和深层神经网络,以及Tandem特征的不同结构对系统性能的影响。最后,多数据流融合的策略用于进一步提高系统性能,基于DNN的无校正发音数据流和母语英语数据流合并的Tandem特征取得了最好的性能,与基线系统相比,识别正确率提高了7.96%,错误类型诊断正确率提高了14.71%。 展开更多
关键词 发音错误检测 Tandem特征 发音规则 深度神经网络(DNN) 多层神经感知(MLP)
在线阅读 下载PDF
基于JSM和MLP改进发音错误检测的方法 被引量:1
19
作者 袁桦 史永哲 +1 位作者 赵军红 刘加 《自动化学报》 EI CSCD 北大核心 2014年第12期2815-2823,共9页
针对发音错误检测的发音字典生成提出基于联合序列多阶模型(Joint-sequence multi-gram,JSM)和多层神经感知(Multi-layer perception,MLP)的方法.首先使用JSM模型对发音错误进行建模,将标准发音和错误发音组合为发音对,表示它们之间的... 针对发音错误检测的发音字典生成提出基于联合序列多阶模型(Joint-sequence multi-gram,JSM)和多层神经感知(Multi-layer perception,MLP)的方法.首先使用JSM模型对发音错误进行建模,将标准发音和错误发音组合为发音对,表示它们之间的对应关系,再使用N元文法来统计各发音对之间的关系,描述错误发音对上下文关系的依赖.最后使用MLP对发音对之间的关系进行重新建模,以学习到在相似的上下文条件下发生的相似的错误.实验证明使用MLP对高阶模型进行概率重估能有效的平滑概率空间,提高了发音错误检测的性能. 展开更多
关键词 发音错误检测 联合序列多阶模型 多层神经感知 计算机辅助语言学习
在线阅读 下载PDF
基于近红外光谱技术实现掺假山羊奶的定性和定量检测 被引量:6
20
作者 褚莹 丁武 齐强强 《西北农业学报》 CAS CSCD 北大核心 2011年第12期192-196,共5页
以近红外光谱(NIRS)技术为基础,实现掺假山羊奶的快速、无损检测。采用主成分分析结合神经网络以及偏最小二乘法(PLS)分别对纯山羊奶和掺有奶油、还原奶的两类掺假山羊奶进行定性和定量研究。结果表明,将主成分分析与多层感知器(Multila... 以近红外光谱(NIRS)技术为基础,实现掺假山羊奶的快速、无损检测。采用主成分分析结合神经网络以及偏最小二乘法(PLS)分别对纯山羊奶和掺有奶油、还原奶的两类掺假山羊奶进行定性和定量研究。结果表明,将主成分分析与多层感知器(Multilayer Perceptron,MLP)神经网络相结合建立的定性判别模型对样品建模集和预测集的正确判别率都达到100%。光谱经预处理、优选波段和主成分维数后,利用PLS分别建立两类掺假奶的定量校正模型。其中掺奶油山羊奶定量校正模型的决定系数(R2)为98.54%,交叉验证均方根差(RMSECV)为0.379;掺还原奶山羊奶定量校正模型的R2为96.38%,RMSECV为6.20。同时运用马氏距离和二审剔除法判断和剔除异常样本后,两类掺假奶模型的R2分别提高到98.85%和97.06%,RM-SECV分别降低到0.333和5.61。外部验证得到预测值与真值的相关系数(R2)分别为0.989和0.982,预测效果满意。所得结论表明,近红外光谱技术结合化学计量学方法可以实现掺假山羊奶的定性和定量检测。 展开更多
关键词 近红外 掺假山羊奶 多层感知神经网络 偏最小二乘法
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部