主成分分析网络(PCANet)是一种简单的深度学习网络模型,在图像识别领域具有很强的应用潜力.本文在PCANet的基础上,通过对PCANet结构进行分析,构造了一种基于多层特征融合的PCANet(PCANet_dense)网络模型.与单纯地只将前一层网络输出作...主成分分析网络(PCANet)是一种简单的深度学习网络模型,在图像识别领域具有很强的应用潜力.本文在PCANet的基础上,通过对PCANet结构进行分析,构造了一种基于多层特征融合的PCANet(PCANet_dense)网络模型.与单纯地只将前一层网络输出作为后一层网络输入的PCANet不同,PCANet_dense利用了不同层的特征信息.在2层网络结构中,它首先将原始图像特征和第1层网络的输出进行级联,然后将级联后的结果作为第2层网络的输入.而在3层网络结构中,它则将第1层和第2层网络的输出级联起来,作为第3层网络的输入.由于PCANet_dense在训练每一层(除了第1层)时使用了更多信息,因此能够获得比原PCANet更好的效果.为了验证所提方法的有效性,本文使用CMU PIE数据集构建网络模型,并在ORL、AR和Extended Yale B 3个公开人脸数据集上对所提出方法的性能进行了测试,实验结果表明,本文提出的PCANet_dense获得了比PCANet更好的性能.展开更多
气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法...气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法。首先,基于真型GIS设备振动模拟平台试验研究测点位置与缺陷类型对振动行为的影响特性;然后,联合统计分析、模态分解、尺度变换方法提出机械振动信号整体与局部信息关注的复合参数分析方法,引入主成分分析开展多测点振动信息的特征层融合降维;最后,提出改进放缩权重的Dempster-Shafer(DS)证据理论和Bagging投票机制的强/弱基学习器决策层融合机制,联合构建多层融合振动数据分析的GIS设备机械缺陷诊断模型。结果表明:不同类型机械缺陷信号的响应幅值、特征频点和畸变程度存在显著差异,复合特征参量大小及分散程度各不相同;同时,测点位置对缺陷信号的复合振动特征参量的表现形式及分布区间也具有一定影响;基于多层融合数据分析的诊断模型实现缺陷有效识别,辨识准确率为98.66%,相比单一分类器诊断效果提升5.83%。该文可为GIS设备机械缺陷诊断方法提供有价值的参考。展开更多
文摘主成分分析网络(PCANet)是一种简单的深度学习网络模型,在图像识别领域具有很强的应用潜力.本文在PCANet的基础上,通过对PCANet结构进行分析,构造了一种基于多层特征融合的PCANet(PCANet_dense)网络模型.与单纯地只将前一层网络输出作为后一层网络输入的PCANet不同,PCANet_dense利用了不同层的特征信息.在2层网络结构中,它首先将原始图像特征和第1层网络的输出进行级联,然后将级联后的结果作为第2层网络的输入.而在3层网络结构中,它则将第1层和第2层网络的输出级联起来,作为第3层网络的输入.由于PCANet_dense在训练每一层(除了第1层)时使用了更多信息,因此能够获得比原PCANet更好的效果.为了验证所提方法的有效性,本文使用CMU PIE数据集构建网络模型,并在ORL、AR和Extended Yale B 3个公开人脸数据集上对所提出方法的性能进行了测试,实验结果表明,本文提出的PCANet_dense获得了比PCANet更好的性能.
文摘气体绝缘金属封闭开关设备(gas insulated metal enclosed switchgear,GIS)机械缺陷是导致设备故障的重要因素,针对单测点、单证据机械缺陷诊断模型信息缺失和精度不足问题,该文提出一种多层融合振动数据分析的GIS设备机械缺陷诊断方法。首先,基于真型GIS设备振动模拟平台试验研究测点位置与缺陷类型对振动行为的影响特性;然后,联合统计分析、模态分解、尺度变换方法提出机械振动信号整体与局部信息关注的复合参数分析方法,引入主成分分析开展多测点振动信息的特征层融合降维;最后,提出改进放缩权重的Dempster-Shafer(DS)证据理论和Bagging投票机制的强/弱基学习器决策层融合机制,联合构建多层融合振动数据分析的GIS设备机械缺陷诊断模型。结果表明:不同类型机械缺陷信号的响应幅值、特征频点和畸变程度存在显著差异,复合特征参量大小及分散程度各不相同;同时,测点位置对缺陷信号的复合振动特征参量的表现形式及分布区间也具有一定影响;基于多层融合数据分析的诊断模型实现缺陷有效识别,辨识准确率为98.66%,相比单一分类器诊断效果提升5.83%。该文可为GIS设备机械缺陷诊断方法提供有价值的参考。