期刊文献+
共找到68篇文章
< 1 2 4 >
每页显示 20 50 100
多层次结构生成对抗网络的文本生成图像方法 被引量:15
1
作者 孙钰 李林燕 +2 位作者 叶子寒 胡伏原 奚雪峰 《计算机应用》 CSCD 北大核心 2019年第11期3204-3209,共6页
近年来,生成对抗网络(GAN)在从文本描述到图像的生成中已经取得了显著成功,但仍然存在图像边缘模糊、局部纹理不清晰以及生成样本方差小等问题。针对上述不足,在叠加生成对抗网络模型(StackGAN++)基础上,提出了一种多层次结构生成对抗网... 近年来,生成对抗网络(GAN)在从文本描述到图像的生成中已经取得了显著成功,但仍然存在图像边缘模糊、局部纹理不清晰以及生成样本方差小等问题。针对上述不足,在叠加生成对抗网络模型(StackGAN++)基础上,提出了一种多层次结构生成对抗网络(MLGAN)模型,该网络模型由多个生成器和判别器以层次结构并列组成。首先,引入层次结构编码方法和词向量约束来改变网络中各层次生成器的条件向量,使图像的边缘细节和局部纹理更加清晰生动;然后,联合训练生成器和判别器,借助多个层次的生成图像分布共同逼近真实图像分布,使生成样本方差变大,增加生成样本的多样性;最后,从不同层次的生成器生成对应文本的不同尺度图像。实验结果表明,在CUB和Oxford-102数据集上MLGAN模型的Inception score分别达到了4.22和3.88,与StackGAN++相比,分别提高了4.45%和3.74%。MLGAN模型在解决生成图像的边缘模糊和局部纹理不清晰方面有了一定提升,其生成的图像更接近真实图像。 展开更多
关键词 生成对抗网络 文本生成图像 多层次结构生成对抗网络 多层次图像分布 层次结构编码
在线阅读 下载PDF
基于生成对抗网络的页岩孔隙结构参数表征方法——图像数据增强、超分辨率重构和多矿物相分割
2
作者 刘夫贵 杨永飞 +7 位作者 杨海元 陶柳 陶运玮 张凯 孙海 张磊 钟俊杰 姚军 《石油勘探与开发》 北大核心 2025年第5期1118-1130,共13页
为解决现有成像技术无法同时实现高分辨率和大视域、人工进行页岩多矿物相分割的精细度不足等问题,提出一个基于生成对抗网络表征页岩孔隙结构参数的综合框架,该方法包括图像数据增强、超分辨率重构以及多矿物相自动分割。基于真实页岩... 为解决现有成像技术无法同时实现高分辨率和大视域、人工进行页岩多矿物相分割的精细度不足等问题,提出一个基于生成对抗网络表征页岩孔隙结构参数的综合框架,该方法包括图像数据增强、超分辨率重构以及多矿物相自动分割。基于真实页岩二维和三维图像,通过相关函数、熵、孔隙度、孔隙尺寸分布和渗透率等参数对该框架进行了准确性评价。应用结果表明:该框架无需成对的高低分辨率页岩图像,可将三维低分辨率数字岩心的分辨率提高8倍;实现降噪、去模糊以及边缘锐化,重构低分辨率下缺失的细尺度孔隙;训练好的分割模型能有效改善人工多矿物相分割的结果,所获孔隙尺寸分布、渗透率等参数与真实岩心数据高度一致。该框架极大地改进了页岩复杂微观结构的精细表征,同时也适用于碳酸盐岩、煤岩和致密砂岩储层等其他非均质多孔介质。 展开更多
关键词 页岩 孔隙结构参数 生成对抗网络 超分辨率 多矿物相自动分割 多尺度融合
在线阅读 下载PDF
基于生成对抗网络的框架结构平面整体布置方法
3
作者 钟燕 雷昕 +2 位作者 龙丹冰 方长建 康永君 《工程科学与技术》 北大核心 2025年第3期72-81,共10页
建筑改建或增建时的结构设计是房屋结构设计中不容忽视的内容。本文面向建筑初步设计阶段,针对部分结构已确定的情况提出了基于生成对抗网络的框架结构平面整体布置方法,在建筑和部分结构双重约束条件下进行框架结构设计。该方法的核心... 建筑改建或增建时的结构设计是房屋结构设计中不容忽视的内容。本文面向建筑初步设计阶段,针对部分结构已确定的情况提出了基于生成对抗网络的框架结构平面整体布置方法,在建筑和部分结构双重约束条件下进行框架结构设计。该方法的核心为框架结构平面整体布置模型。在有限数据样本下,为减少模型训练参数,凝练样本特征,达到更好的模型训练效果,提出了建筑信息表达方法用于表达与结构特征有强关联性的建筑特征;提出了框架梁信息表达方法用于在平面图形中表达梁截面特征;提出框架柱信息表达方法用于在平面图形中表达柱截面特征。通过叠加特征图、裁剪和增广等手段,构造了用于训练生成式算法模型的5120对数据作为数据集。同时,除沿用交并比评价指标外,为更合理地评价模型的“设计”能力,基于框架结构设计规则提出了原柱率、不合理指数和综合指标,并依据指标确定了最佳的框架结构平面整体布置模型。使用时将建筑和部分结构特征图输入最佳模型,即可生成框架结构平面布置图。最后,通过案例分析论证了本文提出的框架结构平面整体布置方法能快速地生成布置合理且满足经验要求的结构设计。 展开更多
关键词 框架结构 生成对抗网络 智能生成式设计
在线阅读 下载PDF
双目标优化与生成对抗网络结合的框架结构阻尼器布置方案智能设计方法 被引量:4
4
作者 潘毅 陈齐 +1 位作者 王腾 周祎 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第1期58-70,共13页
为实现框架结构的阻尼器智能化布置,结合减震设计原理和智能算法,采用双目标优化算法和生成对抗网络算法分别进行阻尼器竖向和水平智能布置研究,并将该方法应用到两个框架结构减震设计工程案例中。在框架结构减震设计中,采用双目标优化... 为实现框架结构的阻尼器智能化布置,结合减震设计原理和智能算法,采用双目标优化算法和生成对抗网络算法分别进行阻尼器竖向和水平智能布置研究,并将该方法应用到两个框架结构减震设计工程案例中。在框架结构减震设计中,采用双目标优化算法进行阻尼器竖向布置,并与逐层逼近法、工程师设计和非减震设计进行对比,结果表明,采用该优化算法得到的阻尼器竖向布置方案能有效降低层间位移角和楼层加速度,提高结构的抗震性能。在确定各楼层的阻尼器数量后,利用训练好的生成对抗网络生成模型,可快速、自动地选择和确定各楼层阻尼器的平面安装位置,生成的平面布置与工程师设计的平面布置在相似性差异度综合评价指标上小于临界值0.1,说明两者相似度较高,且有利于提高原结构的抗扭能力。将双目标优化算法与生成对抗网络相结合,不仅能满足框架结构的减震性能目标,而且可实现阻尼器布置方案的智能设计,提升减震工程设计效率。 展开更多
关键词 优化算法 生成对抗网络 框架结构 阻尼器布置 智能设计
在线阅读 下载PDF
基于双鉴别器条件生成对抗网络的隐私增强联邦学习方案
5
作者 沈翰林 汪学明 《计算机工程与设计》 北大核心 2025年第8期2226-2232,共7页
基于目前的隐私增强联邦学习方法可能存在准确率下降与通信开销增加等问题,甚至可能产生新的不安全因素,提出了一种差分隐私增强的双鉴别器条件生成对抗网络模型。在该模型中,引入了双鉴别器结构,通过模型中生成器和不同鉴别器之间的两... 基于目前的隐私增强联邦学习方法可能存在准确率下降与通信开销增加等问题,甚至可能产生新的不安全因素,提出了一种差分隐私增强的双鉴别器条件生成对抗网络模型。在该模型中,引入了双鉴别器结构,通过模型中生成器和不同鉴别器之间的两两博弈过程,使得生成器所生成的数据在满足差分隐私的要求的同时尽可能接近输入数据。在联邦学习框架中应用该模型,可以保证模型的准确率不会因为隐私保护措施而大幅下降,与此同时增强联邦学习隐私保护的能力。通过仿真实验验证了所提出方案在点对点架构下的有效性。 展开更多
关键词 联邦学习 隐私增强 准确率 差分隐私 双鉴别器结构 条件生成对抗网络 点对点构架
在线阅读 下载PDF
多层次生成对抗网络的动画头像生成方法研究 被引量:7
6
作者 高文超 任圣博 +1 位作者 田驰 赵珊珊 《计算机工程与应用》 CSCD 北大核心 2022年第9期230-237,共8页
现有的动画图像生成方法存在合成图像多样性缺失、局部纹理不清晰、样本方差较小,难以根据细节描述进行生成的问题。基于堆叠式生成对抗网络(StackGAN++)的思想,结合辅助分类器,提出改进模型ACM-GAN(auxiliary classification atteched ... 现有的动画图像生成方法存在合成图像多样性缺失、局部纹理不清晰、样本方差较小,难以根据细节描述进行生成的问题。基于堆叠式生成对抗网络(StackGAN++)的思想,结合辅助分类器,提出改进模型ACM-GAN(auxiliary classification atteched multi-level generative adversial networks,带有辅助分类器的多层次结构生成对抗网络)用于动画人物头像生成。该网络模型由两个生成器和两个判别器堆叠而成,并在判别器中嵌入辅助分类器对生成结果进行约束,使生成样本方差变大,增加生成样本的多样性。为保证合成图像真实度和清晰度,引入特征图空间损失和图像像素空间均值方差损失以最小化合成数据和真实数据的距离。实验结果表明,多层次结构能够有效稳定训练过程,增加图像的边缘细节和局部纹理,同时辅助分类器有效解决模式崩溃问题,提高生成指定类别图像的准确率。ACM-GAN生成图像的FID分数达到27.96,相比于StackGAN++提升23.1%。 展开更多
关键词 动画头像生成 生成对抗网络 多层次结构 辅助分类器
在线阅读 下载PDF
基于多层次分辨率递进生成对抗网络的文本生成图像方法 被引量:5
7
作者 许一宁 何小海 +1 位作者 张津 卿粼波 《计算机应用》 CSCD 北大核心 2020年第12期3612-3617,共6页
针对文本生成图像任务存在生成图像有目标结构不合理、图像纹理不清晰等问题,在注意力生成对抗网络(AttnGAN)的基础上提出了多层次分辨率递进生成对抗网络(MPRGAN)模型。首先,在低分辨率层采用语义分离-融合生成模块,将文本特征在自注... 针对文本生成图像任务存在生成图像有目标结构不合理、图像纹理不清晰等问题,在注意力生成对抗网络(AttnGAN)的基础上提出了多层次分辨率递进生成对抗网络(MPRGAN)模型。首先,在低分辨率层采用语义分离-融合生成模块,将文本特征在自注意力机制引导下分离为3个特征向量,并用这些特征向量分别生成特征图谱;然后,将特征图谱融合为低分辨率图谱,并采用mask图像作为语义约束以提高低分辨率生成器的稳定性;最后,在高分辨率层采用分辨率递进残差结构,同时结合词注意力机制和像素混洗来进一步改善生成图像的质量。实验结果表明,在数据集CUB-200-2011和Oxford-102上,所提模型的IS分别达到了4.70和3.53,与AttnGAN相比分别提高了7.80%和3.82%。MPRGAN模型能够在一定程度上解决结构生成不稳定的问题,同时其生成的图像也更接近真实图像。 展开更多
关键词 文本生成图像 生成对抗网络 自注意力机制 残差结构 像素混洗
在线阅读 下载PDF
一种结合卷积自编码和补丁惩罚的生成对抗网络单图像去雨方法 被引量:3
8
作者 陈铭 赵嘉 +2 位作者 侯家振 韩龙哲 谭德坤 《电光与控制》 CSCD 北大核心 2024年第2期83-91,共9页
针对传统的图像去雨方法存在去雨图像失真、生成伪影等问题,提出一种结合卷积自编码和补丁惩罚的生成对抗网络单图像去雨方法。首先,该方法采用卷积自编码组成生成器网络,使用对称跳跃连接提高生成器网络的训练效率和收敛性能,实现对图... 针对传统的图像去雨方法存在去雨图像失真、生成伪影等问题,提出一种结合卷积自编码和补丁惩罚的生成对抗网络单图像去雨方法。首先,该方法采用卷积自编码组成生成器网络,使用对称跳跃连接提高生成器网络的训练效率和收敛性能,实现对图像细节信息和二维信号空间信息的重构;其次,引入马尔可夫鉴别器在图像补丁层次上进行惩罚,去除生成图像中的伪影;最后,提出一种新的精细化损失函数参与训练网络模型,进一步增强模型的去雨深度。采用峰值信噪比和结构相似性作为模型的评价标准,实验结果表明,该方法在现实雨图和合成雨图的去雨处理上都有良好的表现,基本还原了图像细节内容,并保证了较高的视觉质量。 展开更多
关键词 图像去雨 生成对抗网络 卷积自编码 马尔可夫鉴别器 峰值信噪比 结构相似性
在线阅读 下载PDF
基于生成对抗网络的树种识别方法 被引量:3
9
作者 苏彤 许杰 《林业科学》 EI CAS CSCD 北大核心 2024年第2期97-105,共9页
【目的】利用卷积神经网络模型进行图像自动识别时,为防止模型过拟合通常需要大量训练样本。本研究为提高树种识别准确率,在原有叶片图像基础上进行图像样本扩充来保证训练质量,提出一种融合生成对抗网络与卷积神经网络的树种识别方法... 【目的】利用卷积神经网络模型进行图像自动识别时,为防止模型过拟合通常需要大量训练样本。本研究为提高树种识别准确率,在原有叶片图像基础上进行图像样本扩充来保证训练质量,提出一种融合生成对抗网络与卷积神经网络的树种识别方法。【方法】在Pytorch框架下,采集10种常见树种(山杨、梣叶槭、榆、刺槐、紫丁香、杜仲、火炬树、山荆子、水曲柳、红端木)叶片图像作为研究对象。首先,采用均值滤波去噪和尺寸归一化对图像进行预处理。其次,以生成对抗网络生成的图像扩充数据集,其中,以深度卷积生成对抗网络(DCGAN)模型为基础并对其进行改进,建立残差条件深度卷积生成对抗网络(RC-DCGAN)模型,将随机噪声和类别标签作为生成器的输入,以控制样本生成过程;在生成器中嵌入残差结构,使生成模型学习更多特征信息,以提高生成图像质量。然后,将原始图像和扩充图像作为卷积神经网络(CNN)的训练集,一方面,使用RC-DCGAN模型和旋转、镜像、改变对比度等传统图像扩充方法,扩充图像11400幅;另一方面,将原始图像与生成图像、原始图像与传统扩充图像,分别输入至CNN中进行训练,并在原始图像的每个类别中随机挑选50幅对模型进行测试,以验证生成对抗网络对提升识别准确率的可行性。最后,确定适合试验要求的CNN分类模型,并与AlexNet模型、VGG-16模型、VGG-19模型、ResNet18模型的识别效果进行对比,以检验本研究方法的可行性。【结果】RC-DCGAN模型比DCGAN模型生成的图像质量更高,贴合真实图像;利用生成对抗网络扩充图像的方法与ResNet30树种识别模型,训练准确率为99.03%,平均验证识别准确率为97.20%;而在相同树种识别模型下,传统图像扩充方法的识别率为95.50%;在相同数据集下,AlexNet模型、VGG-16模型、VGG-19模型、ResNet18模型所获得的识别率分别为86.52%、87.57%、91.43%、93.25%,均低于本研究模型的识别率。【结论】联合生成对抗网络和卷积神经网络的方法对本研究10种树种叶片图像的识别准确率最高,且克服了使用传统图像处理扩充方法使模型泛化能力下降的问题,说明利用生成对抗网络对图像扩充的方法具有可行性和有效性,可为相关研究工作提供借鉴。 展开更多
关键词 卷积神经网络 树种识别 生成对抗网络 残差结构
在线阅读 下载PDF
面向网络流量数据增强的生成对抗网络改进研究 被引量:2
10
作者 张雅雯 张玉臣 +1 位作者 吴越 李程 《计算机工程与应用》 CSCD 北大核心 2024年第18期275-284,共10页
网络流量数据的高维复杂特性,使得生成对抗网络生成的网络流量数据质量较差。为了解决该问题,提出一种基于双生成器的条件映射生成对抗网络(a cGAN with projection discriminator based on double generators,PD-DcGAN)并将其应用于少... 网络流量数据的高维复杂特性,使得生成对抗网络生成的网络流量数据质量较差。为了解决该问题,提出一种基于双生成器的条件映射生成对抗网络(a cGAN with projection discriminator based on double generators,PD-DcGAN)并将其应用于少数类流量增强。提出基于Gumbel-sigmoid分布的离散生成器,获得近似于离散数据的光滑可导分布生成离散特征,并将其与连续数据生成器并联运行,二者结果串联组合,获得数据整体分布情况;以内积形式融合条件信息和特征信息,克服传统方法出现假设空间增大的问题,缓解模型训练过程中的不稳定现象;在损失函数中引入梯度惩罚因子,将判别器梯度限定在一定范围内,有效缓解梯度爆炸。利用UNSW-NB15数据集,从生成样本质量和模型有效性两个角度检验模型性能。实验结果证明,与其他数据增强方法相比,PD-DcGAN在准确率、精确率、召回率和F1得分上分别平均提高2.72%、1.72%、1.87%和1.16%;与原始数据集相比,对难以检测的Analysis、Backdoors、Exploits、Shellcode和Worms等少数类流量检测性能提升明显,分别从不足1%分别提升至7.93%、6.53%、15.72%、14.02%和10.91%。 展开更多
关键词 生成对抗网络 生成结构 数据增强 不平衡数据集 网络流量分类
在线阅读 下载PDF
基于信道注意结构的生成对抗网络医学图像去模糊 被引量:8
11
作者 王建明 黎向锋 +2 位作者 叶磊 左敦稳 张丽萍 《计算机科学》 CSCD 北大核心 2021年第S01期101-106,共6页
清晰的医学图像可以有效地帮助医生进行病理分析和病情诊断。针对医学图像中的显微图像在采集过程中因失焦产生的图像模糊问题,文中以生成对抗网络去模糊模型DeblurGAN作为基本框架,提出了一种新的图像去模糊网络。该网络在生成器结构... 清晰的医学图像可以有效地帮助医生进行病理分析和病情诊断。针对医学图像中的显微图像在采集过程中因失焦产生的图像模糊问题,文中以生成对抗网络去模糊模型DeblurGAN作为基本框架,提出了一种新的图像去模糊网络。该网络在生成器结构中引入信道注意结构(Channel Attention,CA),有效地提取了图像的细节特征。图像上采样过程中使用双线性插值+卷积的结构代替反卷积(转置卷积)过程,消除了棋盘效果。使用对抗损失、内容损失相结合的方式训练模型来获得清晰的图像。实验结果表明,该网络较DeblurGAN生成的去模糊图像,在PSNR和SSIM指标上都获得了较大的提升。 展开更多
关键词 图像去模糊 生成对抗网络 卷积神经网络 信道注意结构 医学图像 残差网络
在线阅读 下载PDF
结构保持生成对抗网络的SD-OCT图像去噪方法 被引量:13
12
作者 蔡鑫鑫 张世宇 +2 位作者 陈强 陈允杰 吴梦麟 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2020年第5期751-758,共8页
为了去除频域光学相干断层扫描(SD-OCT)中的散斑噪声,提出了一种结构保持生成对抗网络模型,可以无监督地从SD-OCT图像合成高质量的增强深部成像光学相干断层扫描(EDI-OCT)图像.该模型基于循环生成对抗网络结构学习无配对SD-OCT和EDI-OC... 为了去除频域光学相干断层扫描(SD-OCT)中的散斑噪声,提出了一种结构保持生成对抗网络模型,可以无监督地从SD-OCT图像合成高质量的增强深部成像光学相干断层扫描(EDI-OCT)图像.该模型基于循环生成对抗网络结构学习无配对SD-OCT和EDI-OCT图像之间的域映射关系.为了克服循环生成对抗网络生成图像的结构性差异问题,模型利用连续帧之间的相似性引入全局结构损失,保证了图像的全局结构一致性;同时通过模态无关邻域描述符引入局部结构损失,保持了图像的解剖结构细节.在50组CirrusSD-OCT数据集上进行去噪的实验结果表明,该模型的PSNR值为29.03 dB,SSIM值为0.82,EPI值为0.50,均优于现有模型. 展开更多
关键词 频域光学相干断层扫描 图像去噪 循环生成对抗网络 结构保持
在线阅读 下载PDF
结构增强型生成对抗网络SAR图像超分辨率重建 被引量:10
13
作者 闵锐 杨学志 +1 位作者 董张玉 陈鲸 《地理与地理信息科学》 CSCD 北大核心 2021年第2期47-53,共7页
针对利用生成对抗网络模型(Generative Adversarial Network,GAN)重建SAR(Synthetic Aperture Radar)图像存在边缘细节信息不足和“伪影”(artifacts)现象,该文基于增强型超分辨率生成对抗网络(Enhanced Super-Resolution Generative Ad... 针对利用生成对抗网络模型(Generative Adversarial Network,GAN)重建SAR(Synthetic Aperture Radar)图像存在边缘细节信息不足和“伪影”(artifacts)现象,该文基于增强型超分辨率生成对抗网络(Enhanced Super-Resolution Generative Adversarial Networks,ESRGAN)光学模型,重新设计生成网络上采样重建模块和结构损失函数,提出一种结构增强型生成对抗网络SAR图像超分辨率重建算法,包括特征提取、特征增强和上采样重建3个模块:在特征提取模块采用小尺度卷积层对输入SAR图像进行低层次特征提取;在特征增强模块采用多个级联残差密集块(Residual-in-Residual Dense Block,RRDB)和卷积层提取输入特征;在上采样重建模块交替使用最近邻插值(Nearest Neighbor Interpolation,NNI)和亚像素卷积(Sub-Pixel Convolution,SPC)对特征进行放大重建,使特征信息交互融合。与传统插值算法和经典深度学习重建算法相比,该算法在视觉效果和定量评价方面均有显著提升,能够在保持原网络模型重建图像内容信息不丢失的基础上,增强重建图像边缘细节信息和减缓“伪影”现象,有利于后续目标识别和灾害监测等工作开展。 展开更多
关键词 生成对抗网络 超分辨率重建 合成孔径雷达图像 结构损失 残差密集块
在线阅读 下载PDF
基于结构相似约束生成对抗网络的视网膜OCT图像去噪算法 被引量:6
14
作者 谢巧雪 马宗庆 +1 位作者 祝连庆 朱疆 《电子测量与仪器学报》 CSCD 北大核心 2023年第3期11-20,共10页
光学相干断层扫描(OCT)图像中存在的散斑噪声会掩盖视网膜重要的形态学细节,妨碍视网膜病变的观察和临床诊断。提出了一种基于结构相似约束生成对抗网络的视网膜OCT图像去噪算法,基于残差策略改进生成对抗网络模型结构,并融合结构相似... 光学相干断层扫描(OCT)图像中存在的散斑噪声会掩盖视网膜重要的形态学细节,妨碍视网膜病变的观察和临床诊断。提出了一种基于结构相似约束生成对抗网络的视网膜OCT图像去噪算法,基于残差策略改进生成对抗网络模型结构,并融合结构相似性损失约束模型优化,实现散斑噪声抑制,同时增强对视网膜结构细节的保留。在杜克大学发布的SD-OCT公开数据集上的实验表明,所提算法的峰值信噪比和边缘保持指数分别为28.08和0.960,优于所对比的其他去噪方法,且适用于其他来自A2A SD-OCT研究的公开数据集。 展开更多
关键词 光学相干断层成像 视网膜 图像去噪 生成对抗网络 结构相似损失
在线阅读 下载PDF
改进生成对抗网络及其在结构非线性模型修正中的应用
15
作者 王俊 辛宇 +1 位作者 王佐才 戈壁 《振动工程学报》 EI CSCD 北大核心 2023年第4期934-945,共12页
提出改进生成对抗网络(Generative Adversarial Network,GAN)并在结构非线性模型修正中成功应用。在改进的GAN中,通过引入代理模型的方式,增强网络判别器对非线性结构各节点响应关系特征的学习能力;为避免传统GAN存在的梯度消失问题,使... 提出改进生成对抗网络(Generative Adversarial Network,GAN)并在结构非线性模型修正中成功应用。在改进的GAN中,通过引入代理模型的方式,增强网络判别器对非线性结构各节点响应关系特征的学习能力;为避免传统GAN存在的梯度消失问题,使用跳跃连接和密集连接等方式加强网络层之间的信息交流,并且通过引入组合目标函数,构建模型输入响应与输出参数之间的映射关系实现网络训练。在进行结构非线性模型修正时,结构的动力响应作为网络模型的输入,训练好的GAN模型能够根据输入数据的特征,输出非线性模型参数的最优值,从而实现结构非线性模型修正。通过对地震荷载作用下的12层钢筋混凝土框架结构进行数值模拟,验证了方法的可行性,并通过对比基于卷积神经网络的非线性模型修正结果,验证所提方法的优越性;最后进一步结合地震荷载作用下的悬臂铝梁振动台实验,验证了该非线性模型修正方法的可靠性。 展开更多
关键词 非线性模型修正 改进生成对抗网络 非线性结构 网络训练
在线阅读 下载PDF
基于Inception-Residual和生成对抗网络的水下图像增强 被引量:8
16
作者 王德兴 王越 袁红春 《液晶与显示》 CAS CSCD 北大核心 2021年第11期1474-1485,共12页
为解决光在水下传播过程中由吸收与散射效应导致的水下图像模糊、对比度低和颜色失真问题,提出一种基于Inception-Residual和生成对抗网络的水下图像增强算法。首先,将退化水下图像缩放至256×256×3大小,以获得用于训练模型的... 为解决光在水下传播过程中由吸收与散射效应导致的水下图像模糊、对比度低和颜色失真问题,提出一种基于Inception-Residual和生成对抗网络的水下图像增强算法。首先,将退化水下图像缩放至256×256×3大小,以获得用于训练模型的数据集。接着,将Inception模块、残差思想、编码解码结构和生成对抗网络相结合,构建IRGAN(Generative Adversarial Network with Inception-Residual)模型来增强水下图像。然后,利用全局相似性、内容感知和色彩感知构造多项损失函数,约束生成网络和判别网络的对抗训练。最后,通过训练好的模型对退化水下图像进行处理以获得清晰的水下图像。实验结果表明与现有增强方法相比,所提算法增强的水下图像在PSNR、UIQM和IE指标上的平均值分别比第二名提升13.6%、4.1%和0.9%。在主观感知和客观评估中,增强后的水下图像在清晰度、对比度增强和颜色校正方面均得到改善。 展开更多
关键词 图像处理 水下图像增强 Inception-Residual模块 编码解码结构 生成对抗网络
在线阅读 下载PDF
基于循环生成对抗网络的超分辨率重建算法研究 被引量:10
17
作者 蔡文郁 张美燕 +1 位作者 吴岩 郭嘉豪 《电子与信息学报》 EI CSCD 北大核心 2022年第1期178-186,共9页
为了提高图像超分辨率重建的效果,该文将注意力机制引入多级残差网络(Multi-level Residual Attention Network,MRAN)作为CycleGAN的重建网络,提出了基于循环生成对抗网络(CycleGAN)的超分辨率重建模型MRA-GAN。MRA-GAN模型中重建网络... 为了提高图像超分辨率重建的效果,该文将注意力机制引入多级残差网络(Multi-level Residual Attention Network,MRAN)作为CycleGAN的重建网络,提出了基于循环生成对抗网络(CycleGAN)的超分辨率重建模型MRA-GAN。MRA-GAN模型中重建网络负责将低分辨率(LR)图像重建为高分辨率(HR)图像,退化网络负责将HR图像降采样为LR图像,LR判别器负责鉴别真实LR图像和通过退化网络降采样得到的LR图像,HR判别器负责鉴别真实HR图像和通过重建网络重建得到的HR图像,并且改进了CycleGAN原有的判别器判别方式和损失函数。实验结果验证了MRA-GAN模型与现有算法相比,在峰值信噪比(PSNR)和结构相似性(SSIM)等指标上都有所改进。 展开更多
关键词 图像超分辨重建 多级残差网络 循环生成对抗网络 峰值信噪比 结构化相似性
在线阅读 下载PDF
渐进式生成对抗网络的人脸超分辨率重建 被引量:5
18
作者 胡德敏 王揆豪 林静 《小型微型计算机系统》 CSCD 北大核心 2021年第9期1955-1961,共7页
人脸幻构是图像超分辨率重建领域的一个子领域,用于恢复面部基本特征且不变形.现有方法着重于恢复本身细节相对丰富的图像,本文针对高频细节已丢失严重的人脸图像提出了一种渐进式生成对抗网络的人脸超分辨率重建方法(P-FSRGAN),可生成... 人脸幻构是图像超分辨率重建领域的一个子领域,用于恢复面部基本特征且不变形.现有方法着重于恢复本身细节相对丰富的图像,本文针对高频细节已丢失严重的人脸图像提出了一种渐进式生成对抗网络的人脸超分辨率重建方法(P-FSRGAN),可生成逼真的8倍超高分辨率人脸图像.采用渐进式生成方法,通过分阶段拆分训练的方式来保证训练过程的稳定.Inception-ResNet结构的引入增加了网络的宽度;加快了网络收敛速度.引入语义分割网络获得人脸的边缘轮廓信息和面部特征.实验结果表明,在8倍放大尺度因子下,P-FSRGAN的峰值信噪比达到25.83dB、结构相似性指标达到0.7735、多尺度结构相似性指标达到0.8989,均优于其他算法,表明了本文方法的有效性. 展开更多
关键词 人脸超分辨率 语义分割 Inception-ResNet结构 生成对抗网络
在线阅读 下载PDF
结构引导的渐进式生成对抗壁画修复 被引量:3
19
作者 陈永 陈锦 陶美风 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2023年第6期1247-1259,共13页
针对破损壁画图像修复过程中存在的结构修复不当及修复后壁画细节重构丢失等问题,提出了一种基于结构引导的渐进式生成对抗壁画修复深度学习模型。设计结构生成器对壁画缺失结构内容进行修复,得到修复的壁画结构图像。通过壁画生成器生... 针对破损壁画图像修复过程中存在的结构修复不当及修复后壁画细节重构丢失等问题,提出了一种基于结构引导的渐进式生成对抗壁画修复深度学习模型。设计结构生成器对壁画缺失结构内容进行修复,得到修复的壁画结构图像。通过壁画生成器生成对抗学习,结合改进的双池化SKNet多尺度特征提取模块,利用修复后的结构图像引导破损壁画实现渐进式修复,以提高壁画的细节特征学习能力。通过局部判别器和全局判别器,完成对结构图像和壁画图像的重构判别,增强壁画修复效果的全局一致性。通过对真实敦煌壁画数字化修复的实验表明:所提方法能够有效修复破损的敦煌壁画,修复后的壁画具有更好的结构及细节信息,在主客观评价指标上均优于比较方法。 展开更多
关键词 图像重构 壁画修复 结构引导 双池化特征选择 生成对抗网络
在线阅读 下载PDF
剪力墙结构智能化生成式设计方法:从数据驱动到物理增强 被引量:8
20
作者 廖文杰 陆新征 +3 位作者 黄羽立 赵鹏举 费一凡 郑哲 《土木与环境工程学报(中英文)》 CSCD 北大核心 2024年第1期82-92,共11页
建筑结构的智能化方案设计是智能建造的重要内容。既有研究提出了基于深度神经网络的剪力墙结构生成式设计方法框架、智能设计算法、设计性能评价方法等,完成了从数据驱动到物理增强的智能化设计方法的发展,但目前尚未有研究针对不同设... 建筑结构的智能化方案设计是智能建造的重要内容。既有研究提出了基于深度神经网络的剪力墙结构生成式设计方法框架、智能设计算法、设计性能评价方法等,完成了从数据驱动到物理增强的智能化设计方法的发展,但目前尚未有研究针对不同设计条件下数据驱动和物理增强方法的设计能力进行详细对比,且基于计算机视觉与基于力学性能的评价方法尚未有明确的关系,难以有效保证计算机视觉评价方法的合理性。基于深度生成式算法对比和算例分析,开展数据驱动和物理增强数据驱动方法的详细对比,并进一步验证基于计算机视觉评价与基于力学分析评价方法的正相关性。结果表明:数据驱动的方法易受到数据质量与数量的约束,而物理增强数据驱动的方法设计性能更加稳定,基本摆脱数据质量和数量的约束;基于计算机视觉综合评价指标SCV的合理性阈值为0.5,对应力学性能差异约为10%。 展开更多
关键词 智能化结构设计 生成对抗网络 数据驱动 物理增强 设计评价
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部