期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
利用多层次特征融合网络的图像异常检测算法
1
作者 唐俊 左金梅 +2 位作者 王科 张艳 王年 《国防科技大学学报》 北大核心 2025年第2期173-182,共10页
图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异... 图像异常检测旨在识别并定位图像中的异常区域,针对现有算法中不同层次特征信息利用不充分的问题,提出了基于多层次特征融合网络的图像异常检测算法。通过使用融合了异常先验知识的伪异常数据生成算法,对训练集进行了异常数据扩充,将异常检测任务转化为监督学习任务;构建了多层次特征融合网络,将神经网络中不同层次特征进行融合,丰富了特征中的低层纹理信息和高层语义信息,使得用于异常检测的特征更具区分性;训练时,设计了分数约束损失和一致性约束损失,并结合特征约束损失对整个网络模型进行训练。实验结果表明,MVTec数据集上图像级检测接收机工作特性曲线下面积(area under the receiver operating characteristic, AUROC)平均值为98.7%,像素级定位AUROC平均值为97.9%,每区域重叠率平均值为94.2%,均高于现有的异常检测算法。 展开更多
关键词 图像异常检测 伪异常 多层次特征融合 一致性约束
在线阅读 下载PDF
基于时空图卷积网络与多层次特征融合的快递员3D人体姿态估计
2
作者 丁德波 史耀群 《传感技术学报》 北大核心 2025年第8期1457-1462,共6页
将快递员的人体动作数字化,赋能物流行业的智能化转型,从提升效率、保障健康到推动人机协作,具有广泛的应用潜力。提出了一种新方法,融合了时空图卷积网络与多层次特征融合技术。该方法首先利用时空图卷积网络对人体骨架序列进行建模,... 将快递员的人体动作数字化,赋能物流行业的智能化转型,从提升效率、保障健康到推动人机协作,具有广泛的应用潜力。提出了一种新方法,融合了时空图卷积网络与多层次特征融合技术。该方法首先利用时空图卷积网络对人体骨架序列进行建模,有效提取关节间的空间关系及时序依赖性。接着,通过引入多层次特征融合模块,融合来自不同网络层的特征信息,包括低层次的细节特征和高层次的抽象特征,从而更全面地捕捉快递员的人体关节动态变化和运动模式。为了验证所提方法的性能,在公开数据集Human3.6M上进行了实验。该数据集由视觉传感器采集得到,包含了丰富的人体姿态信息。仿真实验结果表明,所提出的方法能够显著提高三维姿态估计的精度。 展开更多
关键词 三维人体姿态估计 时空图卷积网络 多层次特征融合
在线阅读 下载PDF
多层次特征融合网络的语义分割算法 被引量:3
3
作者 祁欣 袁非牛 +1 位作者 史劲亭 王贵黔 《计算机科学与探索》 CSCD 北大核心 2023年第4期922-932,共11页
目标多尺度性质、高层语义信息不足等造成现有算法很难在目标边界取得非常准确的分类精度。为此,提出了一种基于多层次特征融合的语义分割算法。在解码阶段,设计了三个特征提取分支,分别为空间细节分支、语义补充分支和上下文信息分支... 目标多尺度性质、高层语义信息不足等造成现有算法很难在目标边界取得非常准确的分类精度。为此,提出了一种基于多层次特征融合的语义分割算法。在解码阶段,设计了三个特征提取分支,分别为空间细节分支、语义补充分支和上下文信息分支。空间细节分支采用浅层较高分辨率特征图来生成最终分割图,主要用于保留大量空间细节信息。语义补充分支用于增加更多的高层语义抽象信息。上下文信息分支主要负责提取多尺度全局信息。在语义补充分支中,设计了一种特征融合指导模块(FFGM),建模不同特征图之间像素的对应关系,从而有效地融合不同层次的特征。在空间细节分支中,提出一种自增强特征模块(SEM),对低层次特征进行精调细化,旨在得到清晰的目标边界。在上下文信息分支中,采用金字塔池化模块(PPM)获得多尺度上下文信息,解决目标多尺度性带来的像素错分问题。最后,采用注意力机制融合三个分支提取的特征图,从而强化重要特征,抑制非显著特征。在主流的语义分割数据集PASCAL VOC2012与Cityscapes上,该网络模型获得了81.12%的平均交并比和74.56%的平均交并比,明显优于实验比较算法。 展开更多
关键词 多层次特征融合 上下文信息 语义分割 空洞卷积 注意力机制
在线阅读 下载PDF
基于感知监督和多层次特征融合的去雾算法 被引量:1
4
作者 吴峻江 储珺 +1 位作者 卢昂 冷璐 《计算机工程与应用》 CSCD 北大核心 2023年第21期204-213,共10页
现有图像去雾方法在网络训练时没有考虑去雾后的图像是否满足人类视觉感知;其次以编解码结构为主要结构的去雾网络,不可避免丢失细节信息,去雾后的图像存在纹理模糊、颜色失真等问题。针对上述问题,提出了一个基于感知监督和多层次特征... 现有图像去雾方法在网络训练时没有考虑去雾后的图像是否满足人类视觉感知;其次以编解码结构为主要结构的去雾网络,不可避免丢失细节信息,去雾后的图像存在纹理模糊、颜色失真等问题。针对上述问题,提出了一个基于感知监督和多层次特征融合的图像去雾网络。在网络结构中设计了不同层次的特征融合模块。在编码阶段设计分辨率层次特征复用与融合模块,更好地提取不同尺度下表达能力更强的特征,为重建高质量图像提供更多细节信息;特征转换阶段设计空间上下文层次特征提取与融合模块,提取与融合不同感受野的空间上下文的特征,以提供更加精准的图像结构信息;解码阶段设计自适应特征融合模块,自适应地融合下采样阶段生成的不同分辨率层次的特征及特征转换阶段输出的不同空间上下文层次的特征;其次在训练阶段的损失函数中引入感知损失和多尺度结构相似度损失,引导网络学习更多的视觉感知属性。与当前主流方法相比较,该方法在定量和定性指标得到明显提升的同时提高了对去雾图像的视觉效果。实验结果表明在RESIDE合成数据集以及真实有雾图像上取得显著的去雾效果。 展开更多
关键词 图像去雾 感知监督 编解码网络 多层次特征融合
在线阅读 下载PDF
融合多层次特征的DeepLabv3+轻量级图像分割算法 被引量:2
5
作者 周华平 邓彬 《计算机工程与应用》 CSCD 北大核心 2024年第16期269-275,共7页
基于深度学习的图像语义分割模型通常参数量大,复杂度高,难以部署到移动平台。针对以上问题,对DeepLabv3+算法进行改进,提出一种改进的轻量级图像分割算法。模型的骨干网络使用轻量级MoblieNetv2网络,并获取四个不同层次的输入特征,得... 基于深度学习的图像语义分割模型通常参数量大,复杂度高,难以部署到移动平台。针对以上问题,对DeepLabv3+算法进行改进,提出一种改进的轻量级图像分割算法。模型的骨干网络使用轻量级MoblieNetv2网络,并获取四个不同层次的输入特征,得到四种不同的语义信息;提出CAFF(coordinate attention feature fusion)模块,融合中间两个层次特征并加入位置信息;改进空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)模块,提出CS_ASPP(channel strip_atrous spatial pyramid pooling)模块,在不同膨胀率的空洞卷积后引入CAM(channel attention module)机制,同时并联带状池化(strip pooling,SP)获取上下文信息,并在特征融合后引入SAM(spatial attention module)机制提升分割精度。在PASCAL VOC 2012数据集上进行实验,平均交并比(mIoU)达到了79.14%。实验结果表明,该模型更加精准,且在参数量、分割速度以及分割效果之间达到了较好的平衡。 展开更多
关键词 图像分割 DeepLabV3+ 多层次特征融合 轻量级 注意力机制
在线阅读 下载PDF
三维多层次特征协同的无人机遥感目标检测算法 被引量:5
6
作者 吕伏 傅宇恒 +1 位作者 贺丽娜 杨冬鹏 《计算机科学与探索》 CSCD 北大核心 2024年第5期1301-1317,共17页
针对无人机航拍图像小目标占比大和背景复杂的特点,当前目标检测模型存在精度低和小目标漏检等问题。基于YOLOv8s模型,提出了三维多层次特征协同的无人机遥感目标检测算法。首先,在坐标注意力的基础上提出了三维多分支坐标注意力(MBCA)... 针对无人机航拍图像小目标占比大和背景复杂的特点,当前目标检测模型存在精度低和小目标漏检等问题。基于YOLOv8s模型,提出了三维多层次特征协同的无人机遥感目标检测算法。首先,在坐标注意力的基础上提出了三维多分支坐标注意力(MBCA),通过增加通道维度的信息交互和扩展分支的拆分融合,减少空间维度的计算量,提高了模型全局特征提取能力。其次,采用SPD-Conv替换部分标准卷积,在下采样时有效保留更多特征信息并加快推理速度。然后,在C2f模块中采用了更高效的FastDBB_Bottleneck模块,结合PConv与DBB结构重参数化叠加,以进一步降低模型计算量。最终,通过引入PG-Detect检测头,显著减少计算量并有效降低小目标的漏检率。在VisDrone2019数据集上的实验结果显示,该方法的mAP50值达到了44.5%,较YOLOv8s基线模型提升了5.7个百分点。同时,在自建水坝裂缝数据集上,进行裂缝检测验证实验,改进方法的mAP50值相比YOLOv8s提升了3.3个百分点,FPS达到289帧。实验结果表明在复杂场景目标检测中,所提方法提升了检测模型的精度和实时性,具有良好的适应性和鲁棒性。 展开更多
关键词 无人机遥感 三维多分支坐标注意力(MBCA) YOLOv8 多层次特征融合 小目标检测
在线阅读 下载PDF
多层特征融合与语义增强的盲图像质量评价 被引量:1
7
作者 赵文清 许丽娇 +1 位作者 陈昊阳 李梦伟 《智能系统学报》 CSCD 北大核心 2024年第1期132-141,共10页
针对现有盲图像质量评价算法在面对真实失真图像时性能较差的问题,本文提出多层特征融合和语义信息增强相结合的无参考图像质量评价算法。提取图像的局部和全局失真特征,利用特征融合模块对特征进行多层融合;利用多层扩张卷积增强语义信... 针对现有盲图像质量评价算法在面对真实失真图像时性能较差的问题,本文提出多层特征融合和语义信息增强相结合的无参考图像质量评价算法。提取图像的局部和全局失真特征,利用特征融合模块对特征进行多层融合;利用多层扩张卷积增强语义信息,进而指导失真图像到质量分数的映射过程;考虑预测分数和主观分数之间的相对排名关系,对L_(1)损失函数和三元组排名损失函数进行融合,构建新的损失函数L_(mix)。为了验证本文方法的有效性,在野生图像质量挑战数据集上进行了验证和对比实验,该算法的斯皮尔曼等级相关系数与皮尔逊线性相关系数指标相比原算法分别提升2.3%和2.3%;在康斯坦茨真实图像质量数据数据集和野生图像质量挑战数据集上进行了跨数据集实验,该算法在面对真实失真图像时表现出了良好的泛化性能。 展开更多
关键词 深度学习 图像质量 卷积神经网络 特征提取 通道注意力结构 多层次特征融合 扩张卷积 三元组损失函数
在线阅读 下载PDF
一种基于对偶学习的场景分割模型
8
作者 刘思纯 王小平 +1 位作者 裴喜龙 罗航宇 《计算机科学》 CSCD 北大核心 2024年第8期133-142,共10页
城市场景分割等复杂任务存在特征图空间信息利用率低下、分割边界不够精准以及网络参数量过大的问题。为解决这些问题,提出了一种基于对偶学习的场景分割模型DualSeg。首先,采用深度可分离卷积使模型参数量显著减少;其次,融合空洞金字... 城市场景分割等复杂任务存在特征图空间信息利用率低下、分割边界不够精准以及网络参数量过大的问题。为解决这些问题,提出了一种基于对偶学习的场景分割模型DualSeg。首先,采用深度可分离卷积使模型参数量显著减少;其次,融合空洞金字塔池化与双重注意力机制模块获取准确的上下文信息;最后,利用对偶学习构建闭环反馈网络,通过对偶关系约束映射空间,同时训练“图像场景分割”和“对偶图像重建”两个任务,辅助场景分割模型的训练,帮助模型更好地感知类别边界、提高识别能力。实验结果表明,在自然场景分割数据集PASCAL VOC中,基于Xception骨架网络的DualSeg模型的mIoU和全局准确率分别达到81.3%和95.1%,在CityScapes数据集上mIoU达到77.4%,并且模型参数量减少18.45%,验证了模型的有效性。后续将探索更有效的注意力机制,进一步提高分割精度。 展开更多
关键词 场景分割 图像重建 对偶学习 注意力机制 深度可分离卷积 多层次特征融合
在线阅读 下载PDF
结合多分支结构与门控机制的高分辨率语义分割方法
9
作者 杜可 叶春明 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2024年第10期1570-1582,共13页
针对HRNetv2等多分支结构网络在语义分割任务中无法有效地融合多层次特征的问题,提出一种基于门控机制的新型多层次特征融合方法.首先,构建门控融合单元,利用门控机制有选择性地融合多个分支的特征信息;其次,提出自底向上的融合方法,通... 针对HRNetv2等多分支结构网络在语义分割任务中无法有效地融合多层次特征的问题,提出一种基于门控机制的新型多层次特征融合方法.首先,构建门控融合单元,利用门控机制有选择性地融合多个分支的特征信息;其次,提出自底向上的融合方法,通过阶梯式地传播语义丰富的高级特征与细节饱满的低级特征来增强每一条分支的特征表示;最后将各个分支的特征在通道维度进行拼接,获得预测输出并采用双线性插值算法恢复至原图像尺寸.实验结果表明,仅需增加少量参数,该方法在PASCAL VOC 2012+Aug和Cityscapes数据集上的mIoU分别取得77.01%和80.43%,相较于HRNetv2-W48分别提升了1.14个百分点和1.92个百分点,同时性能超越诸多基线模型. 展开更多
关键词 多分支结构 多层次特征融合 门控机制 自底向上
在线阅读 下载PDF
基于优化HRNetV2的高分辨率遥感影像土地利用自动分类 被引量:4
10
作者 常秀红 李纯斌 +2 位作者 吴静 李颖 李全红 《中国土地科学》 CSSCI CSCD 北大核心 2022年第2期96-105,共10页
研究目的:基于语义分割模型HRNetV2实现高分辨率遥感影像的土地利用自动分类,以期推动深度学习语义分割方法实现遥感影像的土地利用自动分类研究,并为该类研究提供可参考的案例。研究方法:首先对语义分割模型HRNetV2从损失函数、特征提... 研究目的:基于语义分割模型HRNetV2实现高分辨率遥感影像的土地利用自动分类,以期推动深度学习语义分割方法实现遥感影像的土地利用自动分类研究,并为该类研究提供可参考的案例。研究方法:首先对语义分割模型HRNetV2从损失函数、特征提取方面进行优化,以提高模型的分割精度;其次用优化后的HRNetV2模型对民乐县2 m的高分辨率遥感影像进行土地利用分类,并基于混淆矩阵对分类的结果进行评估。研究结果:(1)优化后的HRNetV2语义分割模型的MIOU达81.9%,相较于优化前提高了4.4%,证明了优化方法的有效性;(2)针对民乐县进行的土地利用自动分类总体精度达89.72%,Kappa系数达0.888。研究结论:优化后的HRNetV2语义分割模型在高分辨率遥感影像的土地利用自动分类中具有较强的应用前景。 展开更多
关键词 土地信息 土地利用分类 高分辨率遥感影像 HRNetV2 多层次分辨率特征融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部