期刊文献+
共找到232篇文章
< 1 2 12 >
每页显示 20 50 100
基于自注意力层的神经网络弹道落点预测方法
1
作者 马月红 曹彦敏 +5 位作者 李超旺 赵辰 周辉 赵慧亮 王晓成 李乾 《弹箭与制导学报》 北大核心 2025年第1期53-61,共9页
针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序... 针对现有的弹道落点预测方法误差大和气象变化适应不足的问题,建立了包含气象条件的弹道数据集,并提出了一种基于自注意力层的CNN-BiLSTM-BiGRU弹道落点预测方法。在所构建的组合模型中引入自注意力层和残差连接,加强模型在处理输入序列时动态关注不同时刻信息的能力,缓解网络中的梯度爆炸问题。采用多维时间序列数据的输入表示方法,结合历史弹道轨迹数据和目标特征等信息,减小弹道落点预测误差。仿真结果表明,基于自注意力层的CNN-BiLSTM-BiGRU网络模型的预测效果优于其他模型,射程预测的最大误差占真实值的0.156%,横偏预测的最大误差占真实值的5.904%。文中研究为弹道落点预测领域提供了重要的参考依据。 展开更多
关键词 弹道落点预测 深度学习 弹道模型 自注意力 卷积神经网络 长短期记忆网络 门控循环神经网络
在线阅读 下载PDF
基于人工神经网络——多层感知器(MLP)的遥感影像分类模型 被引量:25
2
作者 韩玲 《测绘通报》 CSCD 北大核心 2004年第9期29-30,42,共3页
新一代遥感信息分类方法的应用,主要是将近年来发展起来的人工神经网络、模糊理论、人工智能等技术用于遥感信息分类,从算法上改进分类的精度。论述人工神经网络中的多层感知器(MLP)的基本思想,结合实例,用多层感知器(MLP)方法对单源及... 新一代遥感信息分类方法的应用,主要是将近年来发展起来的人工神经网络、模糊理论、人工智能等技术用于遥感信息分类,从算法上改进分类的精度。论述人工神经网络中的多层感知器(MLP)的基本思想,结合实例,用多层感知器(MLP)方法对单源及多源融合遥感影像进行了分类,并与各种分类方法的结果进行比较。 展开更多
关键词 人工神经网络 多层感知器 MLP 遥感影像 融合影像
在线阅读 下载PDF
基于Gash修正模型与神经网络优化模型的刺槐冠层截留模拟 被引量:1
3
作者 马军 韩磊 +3 位作者 周鹏 柳利利 王娜娜 马云蕾 《水土保持研究》 CSCD 北大核心 2024年第4期188-196,共9页
[目的]对比分析Gash修正模型和神经网络模型在模拟和预测人工林冠层截留的适用性,揭示干旱区刺槐冠层截留及其响应过程,为深入了解森林生态水文过程及其调控机制提供科学依据。[方法]于2019年5—10月,以宁夏河东地区刺槐(Robinia pseudo... [目的]对比分析Gash修正模型和神经网络模型在模拟和预测人工林冠层截留的适用性,揭示干旱区刺槐冠层截留及其响应过程,为深入了解森林生态水文过程及其调控机制提供科学依据。[方法]于2019年5—10月,以宁夏河东地区刺槐(Robinia pseudoacacia)人工林为研究对象,定位观测了树干茎流和穿透雨并计算得到冠层截留,采用修正后的Gash模型与神经网络模型对刺槐林林冠截留量进行了模拟。[结果](1)研究区刺槐人工林的穿透雨量、树干茎流量、林冠截留量分别为154.19,5.61,16.5 mm,产生穿透雨和树干茎流的阈值分别为1.37,2.17 mm。(2)Gash修正模型和优化后的神经网络模型均能较好地模拟刺槐冠层截留量,Gash修正模型的绝对误差、均方误差、均方根误差、平均绝对百分比误差分别为0.20%,0.06%,0.24%,52.43%,模拟结果拟合精度达到83%;与Gash修正模型相比,采用麻雀搜索算法优化后的BP神经网络算法模型(SSA-BP),均方误差降低了61.48%,平均绝对误差降低了40.39%,均方根误差降低了37.93%,平均绝对百分比误差降低了50.52%,决定系数提高了1.2%。[结论]在林木冠层截留模拟研究方面,加入麻雀搜索算法后的BP神经网络模型具有较好的可靠性,可以有效降低模拟误差,提高模型的预测精度。 展开更多
关键词 截留 修正后Gash模型 神经网络模型 麻雀搜索算法 刺槐林
在线阅读 下载PDF
采用多层感知器神经网络构建亚急性期缺血性脑卒中患者短期预后的预测模型 被引量:8
4
作者 赖海芳 顾琳 +2 位作者 纵亚 牛传欣 谢青 《中国康复理论与实践》 CSCD 北大核心 2022年第3期335-339,共5页
目的采用多层感知器(MLP)神经网络构建亚急性期缺血性脑卒中(CIS)短期预后的预测模型。方法2019年1月至2021年9月,上海市瑞金康复医院康复科再住院缺血性脑卒中患者60例,采集首次住院时(病程<30 d)的临床相关信息,根据首次入院3个月... 目的采用多层感知器(MLP)神经网络构建亚急性期缺血性脑卒中(CIS)短期预后的预测模型。方法2019年1月至2021年9月,上海市瑞金康复医院康复科再住院缺血性脑卒中患者60例,采集首次住院时(病程<30 d)的临床相关信息,根据首次入院3个月后改良Rankin量表评分,判断患者短期预后。采用单因素分析筛选与短期预后相关的危险因素,分别采用常规多因素Logistic回归和MLP建立预测模型,计算两种模型的预测准确率,采用接受者操作特征(ROC)曲线评估预测效应。结果多因素Logistic回归模型预测准确率73.3%,ROC曲线下面积0.851;MLP模型预测准确率88.9%,ROC曲线下面积0.930。结论采用MLP模型能更好预测亚急性期缺血性脑卒中的短期预后。 展开更多
关键词 缺血性脑卒中 亚急性期 多因素Logistic回归 多层感知器 神经网络 预测 短期结局
在线阅读 下载PDF
一种改进的多层感知器神经网络技术 被引量:7
5
作者 杨德义 王赟 +1 位作者 王妙月 赵建庆 《石油物探》 EI CSCD 北大核心 2000年第2期107-116,106,共11页
多层感知器 (multi-layerperceptronnetworks ,MLPN)是一具有多层神经元、前馈、误差反传结构的神经网络 ,它的学习和预测能力受多方面因素的影响。首先我们从理论证明和数值分析的角度研究了传输函数、神经元的数目、网络层数及网络误... 多层感知器 (multi-layerperceptronnetworks ,MLPN)是一具有多层神经元、前馈、误差反传结构的神经网络 ,它的学习和预测能力受多方面因素的影响。首先我们从理论证明和数值分析的角度研究了传输函数、神经元的数目、网络层数及网络误差的迭代方式等与MLPN学习和预测能力的关系 ,对常规的MLPN作了改进 ;然后结合一个理论模型分析的例子 ,讨论了改进的MLPN对非线性函数的学习能力 ;最后 ,以某地野外磁测数据的去噪为实例 ,将本文介绍的神经网络技术用于插值 ,从而达到去噪的目的。 展开更多
关键词 多层感知器 神经网络 地理物理勘探
在线阅读 下载PDF
多层感知器神经网络在机械故障诊断中的应用 被引量:3
6
作者 高洪涛 黄钟岳 陈家骅 《大连理工大学学报》 EI CAS CSCD 北大核心 1997年第6期679-682,共4页
针对BP网络用于复杂机械故障诊断时学习收敛慢、易陷于局部极小点等不足,提出了改进方法较大误差相关修正法,并对各系数进行了研究.结果表明,改进算法拓宽了各系数的取值范围,使网络性能更加平稳,且缩短了训练时间;适用于解决... 针对BP网络用于复杂机械故障诊断时学习收敛慢、易陷于局部极小点等不足,提出了改进方法较大误差相关修正法,并对各系数进行了研究.结果表明,改进算法拓宽了各系数的取值范围,使网络性能更加平稳,且缩短了训练时间;适用于解决多输出节点的复杂故障诊断问题. 展开更多
关键词 神经网络 故障诊断 机械系统 多层感知器
在线阅读 下载PDF
基于多层感知器神经网络的波导匹配负载设计 被引量:3
7
作者 田雨波 殷毅敏 +1 位作者 钱鉴 刘云 《电波科学学报》 EI CSCD 2004年第2期143-147,共5页
讨论了多层感知器神经网络 (MLPNN)在矩形波导终端匹配短负载设计中的应用。网络学习过程采用反向传播算法 (BP) ,并对训练和测试用样本进行随机化 ,训练过程中加入动量项 ,网络结构可进行自动调节。对样本进行了线性定标 ,用定标后的... 讨论了多层感知器神经网络 (MLPNN)在矩形波导终端匹配短负载设计中的应用。网络学习过程采用反向传播算法 (BP) ,并对训练和测试用样本进行随机化 ,训练过程中加入动量项 ,网络结构可进行自动调节。对样本进行了线性定标 ,用定标后的样本训练神经网络 ,建立系统模型 ,通过优化神经网络相应参数成功实现了矩形波导H面T型结构的终端短小匹配负载的结构设计。 展开更多
关键词 多层感知器 神经网络 波导匹配负载设计 结构设计 反向传播算法
在线阅读 下载PDF
基于多层感知器神经网络的小微企业信贷风险研究 被引量:7
8
作者 周驷华 王素南 《现代管理科学》 CSSCI 北大核心 2015年第9期45-48,共4页
文章以多层感知器神经网络算法为基础,对某小贷公司的小微企业信贷数据库中的信贷记录进行了信贷评估,并将该结果与决策向量机、线性判别、二次判别和逻辑回归等数据挖掘方法进行了比较。分析结果表明,从总体上看,多重感知器神经网络算... 文章以多层感知器神经网络算法为基础,对某小贷公司的小微企业信贷数据库中的信贷记录进行了信贷评估,并将该结果与决策向量机、线性判别、二次判别和逻辑回归等数据挖掘方法进行了比较。分析结果表明,从总体上看,多重感知器神经网络算法优于传统的基于参数的分类方法,即多层感知器神经网络算法拥有相对较高的ROC曲线下面积和较低的预期错误分类成本。更进一步,在研究所采用的4种MLP算法中,基于BFGS Quasi-Newton训练算法的MLP表现最为出色,可以作为金融机构进行小微信贷风险评估的辅助决策模型。 展开更多
关键词 多层感知器神经网络 小微企业 信贷评估 数据挖掘 辅助决策模型
在线阅读 下载PDF
融合卷积神经网络与多层感知器的鞍部识别方法
9
作者 孔月萍 党爽 +1 位作者 曾军 高凯 《小型微型计算机系统》 CSCD 北大核心 2021年第2期409-413,共5页
针对传统鞍部识别方法中特征选择困难及未考虑鞍部与其它地形要素的共生关系等问题,利用深度卷积神经网络的特征自学习性能,提出了一种卷积神经网络与多层感知器相结合的混合模型实现DEM数据中的鞍部要素识别.首先设计改进的卷积神经网... 针对传统鞍部识别方法中特征选择困难及未考虑鞍部与其它地形要素的共生关系等问题,利用深度卷积神经网络的特征自学习性能,提出了一种卷积神经网络与多层感知器相结合的混合模型实现DEM数据中的鞍部要素识别.首先设计改进的卷积神经网络模型自动提取鞍部的深度特征,经过Softmax分类器得到候选鞍部点,再运用多层感知器对候选鞍部点的位置进行精细回归,标识出最终的鞍部要素坐标.通过自建的鞍部样本集SADDLE-100训练网络模型,并在三种不同的山地样区进行实验,实验结果表明该方法比其它鞍部识别方法的漏提率减少约50%,正确识别率提高6.7%,在一定程度上避免了人工选择特征造成的鞍部语义信息缺失现象,为DEM中的点状要素识别提供了新的技术途径. 展开更多
关键词 卷积神经网络 特征融合 多层感知器 鞍部识别
在线阅读 下载PDF
基于多层感知器神经网络的路径损耗预测研究 被引量:13
10
作者 吴丽娜 何丹萍 +3 位作者 艾渤 王剑 官科 钟章队 《电波科学学报》 CSCD 北大核心 2021年第3期396-404,共9页
为了更好地服务于5G及未来无线通信系统的网络规划与优化,开展了基于多层感知器(multi-layer perceptron,MLP)神经网络的路径损耗预测研究.利用有限的地物类型,提出一种表征传播环境的简易方法,避免了繁琐的三维场景建模.结合测量数据... 为了更好地服务于5G及未来无线通信系统的网络规划与优化,开展了基于多层感知器(multi-layer perceptron,MLP)神经网络的路径损耗预测研究.利用有限的地物类型,提出一种表征传播环境的简易方法,避免了繁琐的三维场景建模.结合测量数据和由环境表征方法提取的环境特征,基于MLP神经网络建立了路径损耗模型.数据实验的对比分析表明MLP神经网络能够实现路径损耗的准确预测,且环境特征的引入有助于提升模型性能.为解决干扰地物影响路径损耗模型的准确性以及模型对环境变化的敏感性问题,根据视距(line-of-sight,LoS)和非视距(non-line-of-sight,NLoS)标签改进环境表征方法,进一步提升了模型的稳定性和泛化能力.所做工作有助于了解无线电波传播特性,为无线网络优化和通信系统设计提供了理论依据. 展开更多
关键词 路径损耗模型 多层感知器(MLP) 误差反向传播 地物类型 视距 非视距(LoS NLoS)
在线阅读 下载PDF
基于径向基—多层感知器神经网络联合的复杂岩相智能识别与表征 被引量:14
11
作者 姜世一 孙盼科 +7 位作者 张林 贾浪波 何太洪 徐怀民 艾贝贝 张何锋 饶华文 丁遥 《天然气工业》 EI CAS CSCD 北大核心 2022年第9期47-62,共16页
苏里格气田东二区二叠系石盒子组盒8段(以下简称盒8段)为典型的河流相致密砂岩储层,其强非均质性及复杂的储层结构导致该区面临“甜点”储层优选困难等关键技术瓶颈。为此,在分析盒8段储层岩相类型及组合特征、岩相约束下测井数据特征... 苏里格气田东二区二叠系石盒子组盒8段(以下简称盒8段)为典型的河流相致密砂岩储层,其强非均质性及复杂的储层结构导致该区面临“甜点”储层优选困难等关键技术瓶颈。为此,在分析盒8段储层岩相类型及组合特征、岩相约束下测井数据特征的基础上,建立了一种契合岩相及其组合特征、测井数据特征、人工智能算法原理的径向基—多层感知器神经网络联合模型,并开展了储层岩相的精确识别与表征研究。研究结果表明:(1)盒8段发育块状层理砾岩相、槽状交错层理粗砂岩相、板状交错层理粗砂岩相、板状交错层理中砂岩相、平行层理中砂岩相、交错层理细砂岩相、波状层理粉砂岩相、块状层理泥岩相8种岩相类型;(2)盒8上亚段曲流河相储层岩相密度偏小、岩相频率偏高、对应测井数据分布较分散,盒8下亚段辫状河相储层岩相密度偏大、岩相频率偏低、对应测井数据分布较集中;(3)建立的径向基—多层感知器神经网络联合模型识别准确率可达89.06%,相较于单一神经网络模型、交会图、主成分分析和决策树等方法识别准确率明显提高。结论认为,建立的径向基—多层感知器神经网络联合模型不仅克服了现有岩相识别方法准确率低且难以推广的缺陷,而且对实现河流相强非均质性致密砂岩储层高效开发具有重要意义。 展开更多
关键词 苏里格气田东二区 盒8段 河流相 致密砂岩储 岩相类型 径向基—多层感知器神经网络 智能化 岩相识别
在线阅读 下载PDF
录井神经网络油气层解释模型研究 被引量:4
12
作者 胡红 李强 樊红乔 《油气地质与采收率》 CAS CSCD 2003年第2期36-37,79,共3页
利用BP人工神经网络误差反向传播算法 ,开发了神经网络油气层解释软件。通过对泌阳凹陷安棚深层系和焉耆盆地已试油层的原始资料进行学习、训练 ,建立了油气层神经网络解释模型。运用该模型可完成储层流体类型的划分和识别 ,结合录井、... 利用BP人工神经网络误差反向传播算法 ,开发了神经网络油气层解释软件。通过对泌阳凹陷安棚深层系和焉耆盆地已试油层的原始资料进行学习、训练 ,建立了油气层神经网络解释模型。运用该模型可完成储层流体类型的划分和识别 ,结合录井、测井等原始资料 ,可实现计算机处理自动化 ,其预测符合率达 84 .2 %。 展开更多
关键词 录井 神经网络 油气 解释模型 研究
在线阅读 下载PDF
前馈多层神经网络BP算法与可靠性增长模型 被引量:3
13
作者 罗莉 罗强 何鸿君 《计算机工程与科学》 CSCD 2001年第3期55-58,共4页
本文叙述了可靠性增长和 BP算法的基本概念 ,着重研究神经网络 BP算法用于可靠性增长的预测方法。Gompertz模型是可靠性增长的一个很好的预测模型。本文引用文献中的多个实例 ,将BP算法预测结果与 Gompertz模型预测结果相比较 ,结论基... 本文叙述了可靠性增长和 BP算法的基本概念 ,着重研究神经网络 BP算法用于可靠性增长的预测方法。Gompertz模型是可靠性增长的一个很好的预测模型。本文引用文献中的多个实例 ,将BP算法预测结果与 Gompertz模型预测结果相比较 ,结论基本上一致。这说明该方法不但可行 ,而且有简便。 展开更多
关键词 前馈多层神经网络 BP算法 可靠性增长模型 可靠性工程
在线阅读 下载PDF
基于人工神经网络的微弧氧化膜层厚度预测模型的建立 被引量:1
14
作者 赵东山 牛宗伟 刘洪福 《材料导报》 EI CAS CSCD 北大核心 2013年第8期158-162,共5页
在硅酸钠电解液体系中,采用微弧氧化技术在铝合金表面制得了均匀的陶瓷膜。将人工神经网络应用于微弧氧化工艺研究中,借助MATLAB神经网络工具箱,建立了具有4-12-1结构的BP神经网络模型,该模型很好地学习了微弧氧化电解液参数和膜层厚度... 在硅酸钠电解液体系中,采用微弧氧化技术在铝合金表面制得了均匀的陶瓷膜。将人工神经网络应用于微弧氧化工艺研究中,借助MATLAB神经网络工具箱,建立了具有4-12-1结构的BP神经网络模型,该模型很好地学习了微弧氧化电解液参数和膜层厚度之间的映射关系;对膜层的厚度进行了预测,并采用正交试验对电解液参数进行了优化。结果表明,该网络收敛速度较快,预测值与实际值基本吻合,平均预测误差仅为1.93%。当Na2SiO3质量浓度为6g/L、H3BO3质量浓度为1.5g/L、KOH质量浓度为0.5g/L、H2O2质量浓度为0.6g/L时,膜层的厚度达到最大值183μm。 展开更多
关键词 微弧氧化 BP神经网络 厚度 预测模型
在线阅读 下载PDF
人工神经网络及其在控制与系统工程中的应用——第四讲 人工神经网络的应用(之一)——用多层感知器检测高阻抗电弧故障
15
作者 陈允平 《电网技术》 EI CSCD 北大核心 1993年第6期68-71,共4页
自1943年W.McCulloch和Pitts第一次提出神经元的数学模型以来,人工神经元的发展经历了近50年的历史,经历了几度兴衰。只是到了80年代末,随着计算机技术、电子技术和其他分支的人工智能技术的发展,人工神经网络的理论和应用才得到人们空... 自1943年W.McCulloch和Pitts第一次提出神经元的数学模型以来,人工神经元的发展经历了近50年的历史,经历了几度兴衰。只是到了80年代末,随着计算机技术、电子技术和其他分支的人工智能技术的发展,人工神经网络的理论和应用才得到人们空前的重视,提出许多新的算法,找到许多新的用途。 展开更多
关键词 神经网络 系统工程 多层感知器
在线阅读 下载PDF
基于多模态深度神经网络的应用层DDoS攻击检测模型 被引量:18
16
作者 周奕涛 张斌 刘自豪 《电子学报》 EI CAS CSCD 北大核心 2022年第2期508-512,共5页
为进一步提升应用层DDoS攻击检测准确率,提出一种将流量与用户行为特征相结合且模型参数可高效更新的应用层DDoS攻击检测模型.为统一处理流量与用户行为特征的异源数据,利用多模态深度(Multimodal Deep Learning,MDL)神经网络从数据流... 为进一步提升应用层DDoS攻击检测准确率,提出一种将流量与用户行为特征相结合且模型参数可高效更新的应用层DDoS攻击检测模型.为统一处理流量与用户行为特征的异源数据,利用多模态深度(Multimodal Deep Learning,MDL)神经网络从数据流量与网页日志中提取流量与用户行为深层特征后输入汇聚深度神经网络进行检测.为减少MDL神经网络参数更新时的灾难性遗忘现象,在模型参数更新过程中基于弹性权重保持(Elastic Weight Consolidation,EWC)算法为重要模型参数增加惩罚项,保持对初始训练数据集检测准确率的同时,提升对新数据集的检测性能.最后,基于K-Means算法获得模型初始训练数据集聚类,并筛选出新数据集中聚类外数据进行模型参数更新,防止EWC算法因数据相关性过高而失效.实验表明,所提应用层DDoS检测模型检测准确率可达98.2%,且相对MLP_Whole方法模型参数更新性能较好. 展开更多
关键词 应用DDoS攻击 攻击检测模型 多模态深度神经网络 弹性权重保持算法 参数更新
在线阅读 下载PDF
多层前馈二阶神经网络模型
17
作者 梁民 马求明 +1 位作者 徐栋国 罗永红 《系统工程与电子技术》 EI CSCD 1994年第11期51-60,共10页
本文首先建立多层前馈二阶神经网络模型,继而给出该模型的二阶B-P学习算法,在此基础上构造了二阶快速B-P(即FB-P)和改进的二阶FB-P(即MFB-P)学习算法,在计算机上以两类飞机图像目标识别为例,对本文提出的多... 本文首先建立多层前馈二阶神经网络模型,继而给出该模型的二阶B-P学习算法,在此基础上构造了二阶快速B-P(即FB-P)和改进的二阶FB-P(即MFB-P)学习算法,在计算机上以两类飞机图像目标识别为例,对本文提出的多层前馈二阶神经网络模型及其三种二阶学习算法的性能进行仿真实验,并与传统的多层前馈一阶神经网络及其相应学习算法的性能作比较,从而获得若干有意义的结果。 展开更多
关键词 神经网络 神经网络模型 多层前馈
在线阅读 下载PDF
糖熏鸡腿颜色快速精准识别的多层卷积神经网络模型研究 被引量:3
18
作者 王博 杨洪遥 +3 位作者 陆逢贵 陈子东 曹振霞 刘登勇 《食品与发酵工业》 CAS CSCD 北大核心 2021年第1期259-265,共7页
为快速精准识别糖熏鸡腿在熏制过程中产生的所有颜色,基于机器视觉技术,构建Xception-CNN模型用于熏鸡腿颜色的识别,同时应用Res Net-50、Inception和传统卷积神经网络(convolutional neural networks,CNN)等3种模型对比分析Xception-CN... 为快速精准识别糖熏鸡腿在熏制过程中产生的所有颜色,基于机器视觉技术,构建Xception-CNN模型用于熏鸡腿颜色的识别,同时应用Res Net-50、Inception和传统卷积神经网络(convolutional neural networks,CNN)等3种模型对比分析Xception-CNN模型对熏鸡腿颜色的识别效果。采集并经过图像预处理后,共得到不同颜色的熏鸡腿图像4 352张,作为4种模型的实验样本,随机选取其中的3 482张作为训练组,剩下的870张作为测试组。结果表明,4种模型的平均识别准确率分别为92%(Xception-CNN)、91%(Res Net-50)、89%(Inception)、87%(传统CNN);测试时间分别为1. 36 s(Xception-CNN)、0. 81 s(Res Net-50)、0. 98 s(Inception)、2. 48 s(传统CNN)。Xception-CNN模型对糖熏鸡腿图像的颜色识别准确率最高,达到92%,测试时间略高于Res Net-50模型和Inception模型,但低于传统CNN模型,仅需1. 36 s即可完成识别,此模型可以实现糖熏鸡腿颜色的快速精准识别,为糖熏工艺参数精准调控、保障产品颜色标准化等提供可靠依据。 展开更多
关键词 熏鸡 糖熏 颜色识别 机器视觉 多层卷积神经网络模型
在线阅读 下载PDF
人工神经网络方法在水力压裂选井评层中的应用 被引量:16
19
作者 位云生 胡永全 +2 位作者 赵金洲 颜鑫 田继东 《断块油气田》 CAS 2005年第4期42-44,共3页
文章全面分析了影响水力压裂选井评层的因素,结合选取因素的全面性、独立性和泛化性原则,确定了影响水力压裂选井评层的主要因素,明确提出以经济准则作为评判标准。运用人工神经网络方法预测压裂施工的投入产出比,克服了现在油田上常用... 文章全面分析了影响水力压裂选井评层的因素,结合选取因素的全面性、独立性和泛化性原则,确定了影响水力压裂选井评层的主要因素,明确提出以经济准则作为评判标准。运用人工神经网络方法预测压裂施工的投入产出比,克服了现在油田上常用方法的不足,建立了水力压裂选井评层的人工神经网络预测模型、评价方法。理论上明显优于模糊评判中的井层优劣排序。油田实例证明在多因素“数据有限”(小样本)且非线性影响时,人工神经网络方法适应性强、精度高,在水力压裂领域中具有广阔的应用前景。 展开更多
关键词 选井评 人工神经网络 多因素非线性 模糊评判 水力压裂 人工神经网络方法 选井 应用 神经网络预测模型 投入产出比
在线阅读 下载PDF
基于多层局部回归神经网络的多变量非线性系统预测控制 被引量:13
20
作者 刘贺平 张兰玲 孙一康 《控制理论与应用》 EI CAS CSCD 北大核心 2001年第2期298-300,共3页
以罐式搅拌反应器为例 ,针对复杂多变量系统的强耦合性、非线性、时变性等问题 ,研究了多变量非线性系统的预测控制及改善控制性能的方法 .采用多层局部回归神经网络离线建立预测模型 ,以偏差补偿和模型修正相结合的方式对预测模型进行... 以罐式搅拌反应器为例 ,针对复杂多变量系统的强耦合性、非线性、时变性等问题 ,研究了多变量非线性系统的预测控制及改善控制性能的方法 .采用多层局部回归神经网络离线建立预测模型 ,以偏差补偿和模型修正相结合的方式对预测模型进行误差补偿 ,经在线校正用于预测控制 .通过对性能指标中的偏差项负指数加权 ,进一步改善预测控制性能 .仿真结果表明了控制算法的有效性 . 展开更多
关键词 多变量非线性系统 多层局部回归神经网络 预测控制 模型修正
在线阅读 下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部