期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
基于多层局部回归神经网络的多变量非线性系统预测控制 被引量:13
1
作者 刘贺平 张兰玲 孙一康 《控制理论与应用》 EI CAS CSCD 北大核心 2001年第2期298-300,共3页
以罐式搅拌反应器为例 ,针对复杂多变量系统的强耦合性、非线性、时变性等问题 ,研究了多变量非线性系统的预测控制及改善控制性能的方法 .采用多层局部回归神经网络离线建立预测模型 ,以偏差补偿和模型修正相结合的方式对预测模型进行... 以罐式搅拌反应器为例 ,针对复杂多变量系统的强耦合性、非线性、时变性等问题 ,研究了多变量非线性系统的预测控制及改善控制性能的方法 .采用多层局部回归神经网络离线建立预测模型 ,以偏差补偿和模型修正相结合的方式对预测模型进行误差补偿 ,经在线校正用于预测控制 .通过对性能指标中的偏差项负指数加权 ,进一步改善预测控制性能 .仿真结果表明了控制算法的有效性 . 展开更多
关键词 多变量非线性系统 多层局部回归神经网络 预测控制 模型修正
在线阅读 下载PDF
多层局部回归神经网络在激光陀螺捷联惯导系统惯性敏感器误差补偿中的应用 被引量:2
2
作者 吴美平 胡小平 《国防科技大学学报》 EI CAS CSCD 北大核心 2001年第6期104-108,共5页
惯导系统误差补偿技术对提高武器装备的性能具有重要的意义 ,而误差补偿的关键在于误差模型的辨识。探讨将多层局部回归神经网络引入到惯性敏感器误差建模中 ,详细介绍了网络结构和对应的自适应动态梯度算法。仿真算例说明 ,多层局部回... 惯导系统误差补偿技术对提高武器装备的性能具有重要的意义 ,而误差补偿的关键在于误差模型的辨识。探讨将多层局部回归神经网络引入到惯性敏感器误差建模中 ,详细介绍了网络结构和对应的自适应动态梯度算法。仿真算例说明 ,多层局部回归神经网络在惯性敏感器输出误差建模时具有一定的优点 :网络收敛速度快、较好的跟踪性能、稳定性好。 展开更多
关键词 误差模型 多层局部回归神经网络 动态梯度算法 激光陀螺捷联惯导系统 惯性敏感器 误差补偿
在线阅读 下载PDF
基于Logistic回归和多层神经网络的Ⅱ型糖尿病并发症预测 被引量:13
3
作者 王洁 乔艺璇 +1 位作者 彭岩 陈晓 《高技术通讯》 EI CAS 北大核心 2019年第5期455-461,共7页
研究了Ⅱ型糖尿病并发症的预测。针对相关诊断指标众多,直接应用传统的神经网络等模型预测,会带来无法适应多种并发症、运算速度较慢及预测准确率偏低等问题,提出了基于Logistic回归和多层神经网络(MNN)的Ⅱ型糖尿病并发症预测模型。该... 研究了Ⅱ型糖尿病并发症的预测。针对相关诊断指标众多,直接应用传统的神经网络等模型预测,会带来无法适应多种并发症、运算速度较慢及预测准确率偏低等问题,提出了基于Logistic回归和多层神经网络(MNN)的Ⅱ型糖尿病并发症预测模型。该模型首先应用关联性分析,提取与5种不同Ⅱ型糖尿病并发症相关的诊断指标,经Logistic回归模型等分析得到强相关因子,作为预测模型的输入,再运用Python,构建基于多层神经网络的预测模型。实验结果表明,全血糖化血红蛋白测定,尿胆原定性实验指标,尿素和尿红细胞与绝大部分Ⅱ型糖尿病并发症直接相关。Logistic回归结合多层神经网络预测准确率高于单一Logistic回归模型,预测准确率基本保持在85%的水平上,对某些并发症的预测准确率达到90%以上,可以达到为Ⅱ型糖尿病并发症预测提供科学参考的目的。 展开更多
关键词 Ⅱ型糖尿病并发症 关联因素 多层神经网络(MNN) LOGISTIC回归 风险预测
在线阅读 下载PDF
基于多重局部回归Elman神经网络的短期负荷预测
4
作者 孙奇 杨伟 《江苏电机工程》 2007年第2期9-13,共5页
针对传统静态前馈神经网络动态性能较差的缺点,提出了多重局部回归的Elman神经网络,建立了网络的基本结构,并设计了相应的学习算法和学习过程。通过对负荷原始数据的归一化处理,提出将训练数据分段的思想,并利用分段数据对多重局部回归... 针对传统静态前馈神经网络动态性能较差的缺点,提出了多重局部回归的Elman神经网络,建立了网络的基本结构,并设计了相应的学习算法和学习过程。通过对负荷原始数据的归一化处理,提出将训练数据分段的思想,并利用分段数据对多重局部回归的Elman网络进行训练,通过对收敛曲线和训练误差的分析,确定合适的网络神经元个数和网络训练步数,最后利用实际负荷数据对网络进行了检验。结果表明,改进多重局部回归Elman神经网络比传统Elman神经网络具有更高的预测精度。 展开更多
关键词 多重局部回归 ELMAN神经网络 短期负荷预测 收敛曲线
在线阅读 下载PDF
基于广义回归神经网络的特高频局部放电定位法 被引量:5
5
作者 郁琦琛 罗林根 +2 位作者 吴凡 盛戈皞 江秀臣 《中国电力》 CSCD 北大核心 2021年第2期11-17,共7页
局部放电的检测和定位是变电站电力设备状态监测和诊断的重要手段。现有的基于时差法的特高频局部放电定位技术,由于高昂的设备成本限制了其应用范围。提出的基于广义回归神经网络和接收信号幅值强度(RSSI)指纹图的局部放电定位法,分为... 局部放电的检测和定位是变电站电力设备状态监测和诊断的重要手段。现有的基于时差法的特高频局部放电定位技术,由于高昂的设备成本限制了其应用范围。提出的基于广义回归神经网络和接收信号幅值强度(RSSI)指纹图的局部放电定位法,分为2个阶段。在算法的离线阶段,建立被测区域的RSSI指纹图;在线阶段,利用广义回归神经网络(GRNN)实现对局部放电源的定位。现场测试表明:提出的方法平均定位误差为0.51 m,定位误差小于1 m的累积概率为81.6%。和基于RSSI信号衰减模型定位法的克拉美罗下界(CRLB)最小均方误差相比,均方误差小于0.6 m2的GRNN定位误差累积概率为66.7%,要优于基于信号衰减模型定位方法的CRLB。该方法解决了传统方法定位精度低、成本高的缺点,具有较低的硬件成本和良好的环境适应性。 展开更多
关键词 局部放电 RSSI指纹 广义回归神经网络 信号衰减模型 定位技术
在线阅读 下载PDF
多变量系统基于回归神经网络的预测控制 被引量:5
6
作者 张兰玲 《深圳大学学报(理工版)》 CAS 2000年第2期7-14,共8页
以罐式搅拌反应器为例 ,研究多变量系统基于神经网络的预测控制及改善控制性能的方法 .针对复杂多变量系统难以建模的问题 ,采用多层局部回归神经网络离线建立其预测模型 .在反馈校正中 ,考虑到控制准确性和实时性的要求 ,采用偏差补偿... 以罐式搅拌反应器为例 ,研究多变量系统基于神经网络的预测控制及改善控制性能的方法 .针对复杂多变量系统难以建模的问题 ,采用多层局部回归神经网络离线建立其预测模型 .在反馈校正中 ,考虑到控制准确性和实时性的要求 ,采用偏差补偿和模型修正相结合的方式修正神经网络的预测输出 .实验中 ,研究了改善控制性能的方法 ,得出 :对性能指标中的偏差项负指数加权 ,可大大加快系统的动态响应过程 ,并在一定程度上减少系统超调 .仿真结果表明控制算法有效 . 展开更多
关键词 多变量系统 多层局部回归神经网络 预测控制 控制性能 算法
在线阅读 下载PDF
基于混沌-广义回归神经网络的矿井涌水量预测 被引量:16
7
作者 李建林 高培强 +1 位作者 王心义 赵帅鹏 《煤炭科学技术》 CAS CSCD 北大核心 2022年第4期149-155,共7页
针对矿井涌水量预测研究中存在的相关影响因素考虑较少、模型预测精度不高和适用性不强的问题,建立了混沌理论与广义回归神经网络耦合的新的预测模型(Chaos-GRNN模型)。从理论上分析了矿井水文系统产生混沌现象的机理;由混沌理论得到涌... 针对矿井涌水量预测研究中存在的相关影响因素考虑较少、模型预测精度不高和适用性不强的问题,建立了混沌理论与广义回归神经网络耦合的新的预测模型(Chaos-GRNN模型)。从理论上分析了矿井水文系统产生混沌现象的机理;由混沌理论得到涌水量序列相空间重构后的嵌入维数、时间延迟和最大Lyapunov指数,以此确定GRNN的输入层神经元个数、取值和预测时长;采用交叉验证法获得GRNN的光滑因子,建立Chaos-GRNN模型;对平煤十二矿涌水量(2014年1月至2015年12月)进行模型验证。结果表明:矿井水文系统演化过程的循环迭代是产生混沌的根本原因,其表象特征为演化过程的不可逆性、非平稳性和演化结果的多样性;平煤十二矿涌水量时间序列具有混沌特征,其嵌入维数m=7,即涌水量的影响因素为7个,GRNN输入层神经元个数为7;时间延迟τ为13个月,由此确定了GRNN输入层神经元的取值;最大Lyapunov指数为0.0530,确定了GRNN预测时长为19个月;Chaos-GRNN模型预测精度达到了94.98%。该预测模型利用混沌理论量化了广义回归神经网络的输入层和预测时长,充分考虑了矿井涌水量的影响因素,提高了预测精度和适用性。 展开更多
关键词 混沌理论 相空间重构 广义回归神经网络 输入神经 涌水量预测
在线阅读 下载PDF
多层前向神经网络的自适应禁忌搜索训练 被引量:4
8
作者 贺一 刘光远 +2 位作者 雷开友 贺三 邱玉辉 《计算机科学》 CSCD 北大核心 2005年第6期118-120,共3页
针对BP算法属于局部优化算法的不足,提出了一种新的全局优化算法——自适应禁忌搜索作为前向神经网络的训练算法。该算法通过邻域和候选集的相互配合,动态地调整候选集中分别用于集中性搜索与多样性搜索的元素个数,提高了算法运行的质... 针对BP算法属于局部优化算法的不足,提出了一种新的全局优化算法——自适应禁忌搜索作为前向神经网络的训练算法。该算法通过邻域和候选集的相互配合,动态地调整候选集中分别用于集中性搜索与多样性搜索的元素个数,提高了算法运行的质量和效率。以经典的异或问题(XOR)为例,进行了对比研究。实验结果表明,该算法与BP算法相比明显提高了网络的收敛概率和收敛精度。 展开更多
关键词 多层前向神经网络 禁忌搜索 自适应 局部优化算法 全局优化算法 BP算法 训练算法 元素个数 异或问题 对比研究 收敛精度 候选集 多样性 集中性
在线阅读 下载PDF
多分量神经网络自回归模型及其工程应用 被引量:3
9
作者 郝志华 马孝江 《农业机械学报》 EI CAS CSCD 北大核心 2005年第2期115-118,共4页
提出了基于局域波的多分量神经网络自回归模型 ,用于对非线性动态系统时间序列进行建模。首先通过局域波法对分析的原始时间序列进行分解 ,使之成为不同尺度的基本模式分量 ,然后用多层神经网络对每个基本模式分量分别进行时间序列预测... 提出了基于局域波的多分量神经网络自回归模型 ,用于对非线性动态系统时间序列进行建模。首先通过局域波法对分析的原始时间序列进行分解 ,使之成为不同尺度的基本模式分量 ,然后用多层神经网络对每个基本模式分量分别进行时间序列预测。最后 ,所有分量的预测值通过另一个单层线性神经网络进行重构 ,作为原始时间序列的预测值。并把该方法用于转子故障诊断。实验数据表明 ,这种结构用于故障诊断 ,性能优于传统的分析方法。 展开更多
关键词 多层神经网络 时间序列预测 基本模式分量 线性神经网络 非线性动态系统 建模 局域波法 多分量 回归模型 尺度
在线阅读 下载PDF
基于神经网络冷再生层最大剪应力预测 被引量:1
10
作者 杨彦海 董帅 +1 位作者 杨野 叶学峰 《沈阳建筑大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第3期467-474,共8页
目的针对乳化沥青冷再生路面内部剪应力过大易导致路面产生车辙等路面破坏问题,对其内部剪应力进行预测,减少此类病害,更好地选择路面结构参数,提高冷再生层内部抗剪强度.方法以乳化沥青冷再生层的厚度、模量,水泥稳定碎石的厚度、模量... 目的针对乳化沥青冷再生路面内部剪应力过大易导致路面产生车辙等路面破坏问题,对其内部剪应力进行预测,减少此类病害,更好地选择路面结构参数,提高冷再生层内部抗剪强度.方法以乳化沥青冷再生层的厚度、模量,水泥稳定碎石的厚度、模量以及土基模量为输入参数,以冷再生层最大剪应力为输出参数,运用遗传算法对初始参数进行优化,运用灰色神经网络理论构建冷再生层最大剪应力预估模型;构建多元线性回归模型预测最大剪应力,对二者的预测能力进行分析.结果笔者建立的神经网络模型预测值与实测值拟合效果良好,最大误差仅为4.119 2%,能够进行准确预测.多元线性回归和灰色神经网络预测模型,都可用于冷再生层最大剪应力的预测,但灰色神经网络模型对冷再生层最大剪应力数据的预测结果较优.结论把灰色神经网络预测模型与沥青路面结构的设计联系起来,可以更好地控制乳化沥青冷再生路面的剪切破坏. 展开更多
关键词 道路工程 冷再生最大剪应力 遗传算法 灰色神经网络 多元线性回归
在线阅读 下载PDF
采用多层感知器神经网络构建亚急性期缺血性脑卒中患者短期预后的预测模型 被引量:8
11
作者 赖海芳 顾琳 +2 位作者 纵亚 牛传欣 谢青 《中国康复理论与实践》 CSCD 北大核心 2022年第3期335-339,共5页
目的采用多层感知器(MLP)神经网络构建亚急性期缺血性脑卒中(CIS)短期预后的预测模型。方法2019年1月至2021年9月,上海市瑞金康复医院康复科再住院缺血性脑卒中患者60例,采集首次住院时(病程<30 d)的临床相关信息,根据首次入院3个月... 目的采用多层感知器(MLP)神经网络构建亚急性期缺血性脑卒中(CIS)短期预后的预测模型。方法2019年1月至2021年9月,上海市瑞金康复医院康复科再住院缺血性脑卒中患者60例,采集首次住院时(病程<30 d)的临床相关信息,根据首次入院3个月后改良Rankin量表评分,判断患者短期预后。采用单因素分析筛选与短期预后相关的危险因素,分别采用常规多因素Logistic回归和MLP建立预测模型,计算两种模型的预测准确率,采用接受者操作特征(ROC)曲线评估预测效应。结果多因素Logistic回归模型预测准确率73.3%,ROC曲线下面积0.851;MLP模型预测准确率88.9%,ROC曲线下面积0.930。结论采用MLP模型能更好预测亚急性期缺血性脑卒中的短期预后。 展开更多
关键词 缺血性脑卒中 亚急性期 多因素Logistic回归 多层感知器 神经网络 预测 短期结局
在线阅读 下载PDF
基于残差卷积神经网络的开关柜局部放电模式识别 被引量:22
12
作者 黄雪莜 熊俊 +4 位作者 张宇 刘辉 陈鹭 孟祥麟 江秀臣 《中国电力》 CSCD 北大核心 2021年第2期44-51,共8页
传统的开关柜局部放电模式识别方法缺乏一定的泛化性能且识别准确率低,难以在实际工程中应用。提出了一种基于残差卷积神经网络的开关柜局部放电模式识别方法,通过在网络中加入残差模块以解决随着网络层数加深导致准确度饱和后出现退化... 传统的开关柜局部放电模式识别方法缺乏一定的泛化性能且识别准确率低,难以在实际工程中应用。提出了一种基于残差卷积神经网络的开关柜局部放电模式识别方法,通过在网络中加入残差模块以解决随着网络层数加深导致准确度饱和后出现退化的问题,并综合利用开关柜局部放电数据的浅层与深层特征融合学习,实现模式识别。通过开关柜不同绝缘缺陷类别的局部放电模拟实验与配电站现场检测,构建了开关柜局部放电数据样本库,并进行了实验分析。实验结果表明:所提方法的识别正确率达96.06%,相比传统识别方法至少提高了20.22%,且随着训练集样本数量的增加,识别率有更大提升。综合使用特征层融合模块和残差模块,显著提升了模型的泛化性能,更适用于实际工程。 展开更多
关键词 卷积神经网络 残差模块 特征融合 局部放电 模式识别
在线阅读 下载PDF
一种新型基于神经网络的预测控制
13
作者 潘金龙 慈春令 《燕山大学学报》 CAS 2001年第z1期70-72,共3页
重点考虑在多变量系统中对控制的准确性和实时性要求,在已有的神经网络预测模型基础上,提出采用模糊理论改进其反馈校正环节,对预测输出和实际输出在一定的隶属函数和模糊规则下进行模糊推理,输出结果用以修正预测模型,从而使系统综合... 重点考虑在多变量系统中对控制的准确性和实时性要求,在已有的神经网络预测模型基础上,提出采用模糊理论改进其反馈校正环节,对预测输出和实际输出在一定的隶属函数和模糊规则下进行模糊推理,输出结果用以修正预测模型,从而使系统综合性能得到实质性提高,仿真结果表明改进有效. 展开更多
关键词 预测控制 模糊规则 模糊推理 隶属函数 多层局部回归神经网络.
在线阅读 下载PDF
基于深度学习长短期记忆神经网络的有色金属期货市场预测研究 被引量:9
14
作者 沈虹 李旭 潘琪 《南京理工大学学报》 CAS CSCD 北大核心 2021年第3期366-374,共9页
为提高金融资产预测能力,该文采用深度学习长短期记忆(LSTM)神经网络模型对上海期货交易所(SHFE)和伦敦金属期货交易所(LME)的铝、铜、镍、铅、锡和锌6种有色金属期货价格分别进行长、短期预测,与传统机器学习多层感知器(MLP)模型以及... 为提高金融资产预测能力,该文采用深度学习长短期记忆(LSTM)神经网络模型对上海期货交易所(SHFE)和伦敦金属期货交易所(LME)的铝、铜、镍、铅、锡和锌6种有色金属期货价格分别进行长、短期预测,与传统机器学习多层感知器(MLP)模型以及线性自回归移动平均(ARIMA)模型进行对比研究。数据源于Wind数据库和国际货币基金组织(IMF)数据库。使用Python深度学习软件模拟预测有色金属期货价格,结果显示:有色金属期货市场长期预测中,LSTM模型的预测表现略逊于ARIMA模型,MLP模型预测效果不理想;短期预测中,LSTM模型的预测结果和ARIMA模型相近,均优于MLP模型;LSTM模型与MLP模型相比,模型的稳定性和预测的精确度都更加出色。LSTM模型可作为ARIMA模型的最优替代之一。 展开更多
关键词 深度学习 长短期记忆模型 神经网络 多层感知器模型 回归移动平均模型 有色金属 期货市场 价格预测
在线阅读 下载PDF
印度中央邦马尔瓦地区利用人工神经网络和回归模型预测蒸腾量的比较(摘选)
15
作者 Ajai Singh Jain VK Jayanta Dutta 《农业工程》 2013年第2期104-106,80,共4页
蒸发是水循环的一个重要组成部分,对蒸发量的估算是对水资源和灌溉水量有效利用的一个重要手段。该研究旨在利用多元线性回归模型、多层感知器(MLP)和人工神经网络(ANN)模型模拟印度中央邦马尔瓦地区周蒸发量。利用4种不同天气变量组合... 蒸发是水循环的一个重要组成部分,对蒸发量的估算是对水资源和灌溉水量有效利用的一个重要手段。该研究旨在利用多元线性回归模型、多层感知器(MLP)和人工神经网络(ANN)模型模拟印度中央邦马尔瓦地区周蒸发量。利用4种不同天气变量组合训练神经网络模型。多元线性回归模型只将最高温和相对湿度作为输入值,但是模拟结果不令人满意。MLP模型采用的数据集包括最高和最低温度、风速和相对湿度,在训练和验证中都取得了比较好的结果。MLP模型可以用来模拟周开放式蒸发皿蒸发量,估算缺失数据,并可以作为替代模型以验证蒸发量测定值。降雨量数据并不能改善模型性能。 展开更多
关键词 蒸发皿蒸发量 多层感知器模型 多元线性回归 人工神经网络 降雨量 模拟
在线阅读 下载PDF
全卷积神经网络的字符级文本分类方法 被引量:11
16
作者 张曼 夏战国 +1 位作者 刘兵 周勇 《计算机工程与应用》 CSCD 北大核心 2020年第5期166-172,共7页
传统卷积神经网络文本分类模型全连接层参数过多易引发过拟合问题,为此,将图像分割中的全卷积思想首次引入字符级文本分类任务中,不仅避免了过拟合问题,而且通过卷积层替换全连接层减少了参数数量,从而加快了模型收敛速度。文本分类问... 传统卷积神经网络文本分类模型全连接层参数过多易引发过拟合问题,为此,将图像分割中的全卷积思想首次引入字符级文本分类任务中,不仅避免了过拟合问题,而且通过卷积层替换全连接层减少了参数数量,从而加快了模型收敛速度。文本分类问题中单词、短语等层面的处理方式存在获取文本信息不充分的问题。使用字符级全卷积神经网络进行文本分类,充分获取文本信息,并在卷积池化层后添加局部响应归一化层(LRN),提高了模型的总体性能。通过使用多指标在测试数据集中进行模型评估,充分验证了该模型的有效性,与其他模型相比,提出的模型在二分类与多分类任务中具有更好的分类性能。 展开更多
关键词 文本分类 全卷积神经网络 字符级 局部响应归一化(LRN) 特征提取
在线阅读 下载PDF
基于改进卷积神经网络的遥感图像目标检测方法 被引量:7
17
作者 王艳辉 张福泉 +1 位作者 邹静 侯小毛 《南京理工大学学报》 CAS CSCD 北大核心 2023年第3期330-336,共7页
为了提高遥感目标检测的稳健性和准确性,基于低层特征检测器,增加了1个改进型卷积神经网络(CNN)框架。首先,利用支持向量回归(SVR)对遥感目标进行初步分类,将检测出的目标信息作为CNN框架的输入。然后,对CNN框架进行优化,通过模块扩展... 为了提高遥感目标检测的稳健性和准确性,基于低层特征检测器,增加了1个改进型卷积神经网络(CNN)框架。首先,利用支持向量回归(SVR)对遥感目标进行初步分类,将检测出的目标信息作为CNN框架的输入。然后,对CNN框架进行优化,通过模块扩展的方式纳入更深的模块。为了使得分类器对亮度变化具有更好的稳健性,在特征向量分类之前增加正则化层(RL)。同时,为了提升目标检测的准确性,增加1个欧拉变换层(ETL),作为类别间的分离度量。使用来自CIFAR-10和MNIST数据集中的图像,与定向梯度边缘直方图(E-HOG)方法、基于生成式对抗网络(GAN)的检测方法、基于二值与浮点数混用方法的语义分割网络(MBU-Net)相比较,仿真结果表明:该文方法的精度和F1得分更高,且标准偏差也更低;该文方法的运行时间接近于一般CNN方法;利用该文方法在测试集的卫星图像中进行目标建筑物检测,模块化CNN可以与基于特征的算法实现互补。 展开更多
关键词 卷积神经网络 遥感图像 目标检测 支持向量回归 欧拉变换 卫星图像 建筑物检测
在线阅读 下载PDF
自适应注意力选择与脉冲耦合神经网络相融合的沙漠车辆识别 被引量:2
18
作者 张津剑 顾晓东 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2014年第1期56-64,共9页
针对现有车辆识别模型不适用于沙漠背景的不足,提出一种基于自适应四元数注意力选择模型与脉冲耦合神经网络相融合的车辆识别算法.首先建立自适应四元数注意力选择模型,将图像背景、颜色、亮度等多方面信息并行处理计算注意力显著图,并... 针对现有车辆识别模型不适用于沙漠背景的不足,提出一种基于自适应四元数注意力选择模型与脉冲耦合神经网络相融合的车辆识别算法.首先建立自适应四元数注意力选择模型,将图像背景、颜色、亮度等多方面信息并行处理计算注意力显著图,并利用图像缩放与双线性插值提升计算效率;然后将显著图输入脉冲耦合神经网络,利用神经元脉冲传播特性提取感兴趣区域;最后提取区域尺度不变特征并结合多层分类回归树完成目标识别.实验结果表明,该算法计算时间短、区域提取完整、识别虚警率低;以分辨率0.6m×0.6m的沙漠图像为例,文中算法较形态学及支撑向量机算法识别率分别提升了5.8%和15.4%. 展开更多
关键词 自适应注意力选择 脉冲耦合神经网络 沙漠车辆识别 尺度不变特征 多层分类回归
在线阅读 下载PDF
局部放电脉冲形波的自回归模型参数识别法 被引量:13
19
作者 王猛 谈克雄 +1 位作者 高文胜 吴成琦 《高电压技术》 EI CAS CSCD 北大核心 2001年第3期1-3,共3页
介绍了基于自回归 (Antoregression,简称 AR)模型理论对局部放电脉冲波形进行特征提取的方法。以 AR模型参数作为波形特征量 ,利用前馈神经网络对放电模式进行了识别比较 ,并分析了影响识别效果的各种因素。研究结果表明 ,以 AR模型系... 介绍了基于自回归 (Antoregression,简称 AR)模型理论对局部放电脉冲波形进行特征提取的方法。以 AR模型参数作为波形特征量 ,利用前馈神经网络对放电模式进行了识别比较 ,并分析了影响识别效果的各种因素。研究结果表明 ,以 AR模型系数作为特征向量进行局部放电模式识别是有成效的。在 AR模型的基础上结合波形的其它特征能进一步提高放电的识别率。 展开更多
关键词 局部放电 脉冲形波 回归模型 参数识别 人工神经网络
在线阅读 下载PDF
比例融合与多层规模感知的人群计数方法
20
作者 孟月波 张娅琳 王宙 《智能系统学报》 CSCD 北大核心 2024年第2期307-315,共9页
针对密集场景下人群图像拍摄视角或距离多变造成的多尺度特征获取不足、融合不佳和全局特征利用不充分等问题,提出一种比例融合与多层规模感知的人群计数网络。首先采用骨干网络VGG16提取人群密度初始特征;其次,设计多层规模感知模块,... 针对密集场景下人群图像拍摄视角或距离多变造成的多尺度特征获取不足、融合不佳和全局特征利用不充分等问题,提出一种比例融合与多层规模感知的人群计数网络。首先采用骨干网络VGG16提取人群密度初始特征;其次,设计多层规模感知模块,获得人群多尺度信息的丰富表达;再次,提出比例融合策略,根据卷积层捕获的特征权重重构多尺度信息,提取显著性人群特征;最后,采用卷积回归策略进行密度图的回归。同时,提出一种局部一致性损失函数,通过区域化密度图的方式增强生成密度图与真实密度图的相似度,提高计数性能。在多个人群数据集上的试验结果表明,所提模型优于近年人群计数的先进方法,且在车辆计数上有较好推广性。 展开更多
关键词 人群密度估计与计数 卷积神经网络 多层规模感知 比例融合 局部一致性损失 密度图回归 多尺度信息 空洞卷积
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部