期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
一种基于GRU的半监督网络流量异常检测方法 被引量:26
1
作者 李海涛 王瑞敏 +1 位作者 董卫宇 蒋烈辉 《计算机科学》 CSCD 北大核心 2023年第3期380-390,共11页
入侵检测系统(IDS)是在出现网络攻击时能够发出警报的检测系统,检测网络中未知的攻击是IDS面临的挑战。深度学习技术在网络流量异常检测方面发挥着重要的作用,但现有的方法大多具有较高的误报率且模型的训练大多使用有监督学习的方式。... 入侵检测系统(IDS)是在出现网络攻击时能够发出警报的检测系统,检测网络中未知的攻击是IDS面临的挑战。深度学习技术在网络流量异常检测方面发挥着重要的作用,但现有的方法大多具有较高的误报率且模型的训练大多使用有监督学习的方式。为此,提出了一种基于门循环单元网络(GRU)的半监督网络流量异常检测方法(SEMI-GRU)。该方法将多层双向门循环单元神经网络(MLB-GRU)和改进的前馈神经网络(FNN)相结合,采用数据过采样技术和半监督学习训练方式,应用二分类和多分类方式检验网络流量异常检测的效果,并使用NSL-KDD,UNSW-NB15和CIC-Bell-DNS-EXF-2021数据集进行验证。与经典机器学习模型和DNN,ANN等深度学习模型相比,SEMI-GRU方法在准确率、精确率、召回率、误报率和F1分数等指标上的表现均表现更优。在NSL-KDD二分类和多分类任务中,SEMI-GRU在F1分数指标上领先于其他方法,分别为93.08%和82.15%;在UNSW-NB15二分类和多分类任务中,SEMI-GRU在F1分数上的表现优于对比方法,分别为88.13%和75.24%;在CIC-Bell-DNS-EXF-2021轻文件攻击数据集二分类任务中,SEMI-GRU对所有测试数据均分类正确。 展开更多
关键词 入侵检测系统 半监督学习 多层双向门循环单元 前馈神经网络 NSL-KDD UNSW-NB15
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部