期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于改进时间融合Transformers的中国大豆需求预测方法
1
作者 刘佳佳 秦晓婧 +5 位作者 李乾川 许世卫 赵继春 王一罡 熊露 梁晓贺 《智慧农业(中英文)》 2025年第4期187-199,共13页
[目的/意义]精准预测大豆需求对保障国家粮食安全、优化产业决策与应对国际贸易变局有着重要的现实意义,而利用时间融合Transformers(Temporal Fusion Transformers,TFT)模型开展中国大豆需求预测时,在特征交互层与注意力权重分配等方... [目的/意义]精准预测大豆需求对保障国家粮食安全、优化产业决策与应对国际贸易变局有着重要的现实意义,而利用时间融合Transformers(Temporal Fusion Transformers,TFT)模型开展中国大豆需求预测时,在特征交互层与注意力权重分配等方面仍存在一定局限。为此,亟需探索一种基于改进TFT模型的预测方法,以提升需求预测的准确性与可解释性。[方法]本研究将深度学习的TFT模型应用到中国大豆需求预测中,提出了一种基于多层动态特征交互(Multi-layer Dynamic Feature Interaction,MDFI)与自适应注意力权重优化(Adaptive Attention Weight Optimization,AAWO)改进的MA-TFT(Improved TFT Model Based on MDFI and AAWO)模型。对包含1980—2024年4652个相关指标的中国大豆需求分析数据集进行数据预处理和特征工程,设计实验将MA-TFT模型分别与自回归差分移动平均模型(Autoregressive Integrated Moving Average Model,ARIMA)、长短期记忆网络(Long Short-Term Memory,LSTM)模型及TFT模型进行预测性能对比,进行了消融实验,同时利用SHAP(SHapley Additive exPlanations)工具可解释性分析影响中国大豆需求的关键特征变量,开展了未来10年的中国大豆需求量预测。[结果和讨论]MA-TFT模型的均方误差(Mean Squared Error,MSE)、平均绝对百分比误差(Mean Absolute Percentage Error,MAPE)分别为0.036和5.89%,决定系数R^(2)为0.91,均高于对比模型,均方根误差(Root Mean Square Error,RMSE)和MAPE分别较基准模型TFT累计降低21.84%和3.44%,表明改进TFT的MA-TFT模型能够捕捉特征间复杂关系,提升预测性能;研究利用SHAP工具可解释性分析发现,MA-TFT模型对影响中国大豆需求关键特征变量的解释稳定性较高;预计2025、2030和2034年中国大豆需求量分别达到11799万吨、11033万吨和11378万吨。[结论]基于改进TFT的MA-TFT模型方法为解决现有大豆需求预测方法精度不足、可解释性不强的实际问题提供了解决思路,也为其他农产品时间序列预测的方法优化与应用提供了参考和借鉴。 展开更多
关键词 时间融合Transformers(TFT) 大豆需求预测 多层动态特征交互 自适应注意力权重优化 可解释性分析
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部