现有基于深度学习的农作物病害识别方法对网络浅层、中层、深层特征中包含的判别信息挖掘不够,且提取的农作物病害图像显著性特征大多不足,为了更加有效地提取农作物病害图像中的判别特征,提高农作物病害识别精度,提出一种基于多层信息...现有基于深度学习的农作物病害识别方法对网络浅层、中层、深层特征中包含的判别信息挖掘不够,且提取的农作物病害图像显著性特征大多不足,为了更加有效地提取农作物病害图像中的判别特征,提高农作物病害识别精度,提出一种基于多层信息融合和显著性特征增强的农作物病害识别网络(Crop disease recognition network based on multi-layer information fusion and saliency feature enhancement,MISF-Net)。MISF-Net主要由ConvNext主干网络、多层信息融合模块、显著性特征增强模块组成。其中,ConvNext主干网络主要用于提取农作物病害图像的特征;多层信息融合模块主要用于提取和融合主干网络浅层、中层、深层特征中的判别信息;显著性特征增强模块主要用于增强农作物病害图像中的显著性判别特征。在农作物病害数据集AI challenger 2018及自制数据集RCP-Crops上的实验结果表明,MISF-Net的农作物病害识别准确率分别达到87.84%、95.41%,F1值分别达到87.72%、95.31%。展开更多
船舶检测在军事侦察、海上目标跟踪、海上交通管制等任务中发挥着重要作用。然而,受船舶外形尺度多变和复杂海面背景的影响,在复杂海面上检测多尺度船舶仍然是一个挑战。针对此难题,提出了一种基于多层信息交互融合和注意力机制的YOLOv...船舶检测在军事侦察、海上目标跟踪、海上交通管制等任务中发挥着重要作用。然而,受船舶外形尺度多变和复杂海面背景的影响,在复杂海面上检测多尺度船舶仍然是一个挑战。针对此难题,提出了一种基于多层信息交互融合和注意力机制的YOLOv4改进方法。该方法主要通过多层信息交互融合(multi-layer information interactive fusion,MLIF)模块和多注意感受野(multi-attention receptive field,MARF)模块构建一个双向细粒度特征金字塔。其中,MLIF模块用于融合不同尺度的特征,不仅能将深层的高级语义特征串联在一起,而且将较浅层的丰富特征进行重塑;MARF由感受野模块(receptive field block,RFB)与注意力机制模块组成,能有效地强调重要特征并抑制冗余特征。此外,为了进一步评估提出方法的性能,在新加坡海事数据集(Singapore maritime dataset,SMD)上进行了实验。实验结果表明,所提方法能有效地解决复杂海洋环境下多尺度船舶检测的难题,且同时满足了实时需求。展开更多
文摘现有基于深度学习的农作物病害识别方法对网络浅层、中层、深层特征中包含的判别信息挖掘不够,且提取的农作物病害图像显著性特征大多不足,为了更加有效地提取农作物病害图像中的判别特征,提高农作物病害识别精度,提出一种基于多层信息融合和显著性特征增强的农作物病害识别网络(Crop disease recognition network based on multi-layer information fusion and saliency feature enhancement,MISF-Net)。MISF-Net主要由ConvNext主干网络、多层信息融合模块、显著性特征增强模块组成。其中,ConvNext主干网络主要用于提取农作物病害图像的特征;多层信息融合模块主要用于提取和融合主干网络浅层、中层、深层特征中的判别信息;显著性特征增强模块主要用于增强农作物病害图像中的显著性判别特征。在农作物病害数据集AI challenger 2018及自制数据集RCP-Crops上的实验结果表明,MISF-Net的农作物病害识别准确率分别达到87.84%、95.41%,F1值分别达到87.72%、95.31%。
文摘船舶检测在军事侦察、海上目标跟踪、海上交通管制等任务中发挥着重要作用。然而,受船舶外形尺度多变和复杂海面背景的影响,在复杂海面上检测多尺度船舶仍然是一个挑战。针对此难题,提出了一种基于多层信息交互融合和注意力机制的YOLOv4改进方法。该方法主要通过多层信息交互融合(multi-layer information interactive fusion,MLIF)模块和多注意感受野(multi-attention receptive field,MARF)模块构建一个双向细粒度特征金字塔。其中,MLIF模块用于融合不同尺度的特征,不仅能将深层的高级语义特征串联在一起,而且将较浅层的丰富特征进行重塑;MARF由感受野模块(receptive field block,RFB)与注意力机制模块组成,能有效地强调重要特征并抑制冗余特征。此外,为了进一步评估提出方法的性能,在新加坡海事数据集(Singapore maritime dataset,SMD)上进行了实验。实验结果表明,所提方法能有效地解决复杂海洋环境下多尺度船舶检测的难题,且同时满足了实时需求。