期刊文献+
共找到433篇文章
< 1 2 22 >
每页显示 20 50 100
基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断
1
作者 章力 邓艾东 +2 位作者 王敏 卞文彬 张宇剑 《动力工程学报》 北大核心 2025年第4期571-581,共11页
针对传统多尺度卷积神经网络模型存在的特征定位不精确、训练时间长、抗噪性能差等问题,提出了一种基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断模型。首先,将滚动轴承的一维振动信号转换为二维灰度图作为输入,丰富特... 针对传统多尺度卷积神经网络模型存在的特征定位不精确、训练时间长、抗噪性能差等问题,提出了一种基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断模型。首先,将滚动轴承的一维振动信号转换为二维灰度图作为输入,丰富特征信息;同时,构建多尺度减法神经网络模型,关注层级差异;其次,引入轻量化模块,减少内存访问;然后,结合通道注意力机制,调整特征权重;最后,将故障样本输入到网络模型中,实现精确分类。利用风电机组传动系统模拟实验台采集的样本数据进行诊断任务。结果表明:该故障诊断模型能够有效克服传统多尺度卷积神经网络模型网络层数多、参数量大所带来的弊端,能够充分关注各层级之间的差异信息,减少冗余信息的提取,精确定位故障特征,缩短模型训练时间,在恒定工况、变工况和强噪声工况下都具有较高的诊断精度. 展开更多
关键词 滚动轴承 故障诊断 多尺度减法神经网络 轻量化模块 通道注意力机制 变工况
在线阅读 下载PDF
基于通道注意力机制增强DGNN的外骨骼机器人步态相位预测 被引量:1
2
作者 颜建军 许赢家 +2 位作者 林越 金理 江金林 《华东理工大学学报(自然科学版)》 北大核心 2025年第1期110-118,共9页
利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,... 利用一种基于通道注意力机制增强的有向图神经网络(Channel Attention Enhanced Directed Graph Neural Network,CA-DGNN)的外骨骼机器人步态相位预测方法,提高了步态相位预测的准确性和可靠性。首先,研制了人体下肢姿态信息采集装置,采集人体下肢的行走步态数据并构建人体下肢的骨架模型;之后,建立了基于CA-DGNN步态相位的预测模型,提取人体步态相位的运动特征,并基于当前时刻数据预测未来时刻的步态相位;最后,探讨了滑动窗口大小对算法性能的影响。本文提高了外骨骼机器人步态相位预测的准确性和鲁棒性,为此方向研究提供了一种新的思路和方法。 展开更多
关键词 步态相位预测 惯性传感器 骨架 时空图卷积网络 通道注意力机制
在线阅读 下载PDF
MDA-MIM:一种融合多尺度特征与双重注意力机制的雷达回波图预测模型
3
作者 胡强 高雅婷 +1 位作者 尹宾礼 渠连恩 《通信学报》 北大核心 2025年第3期248-257,共10页
为提升雷达回波图中时空特征的提取质量,提出了一种基于多尺度特征融合和双重注意力机制的MIM改进(MDA-MIM)模型。该模型基于空洞卷积实现多尺度特征提取与融合。通过在MIM模型中的非平稳模块集成自注意力机制,调整不同时间步长和空间... 为提升雷达回波图中时空特征的提取质量,提出了一种基于多尺度特征融合和双重注意力机制的MIM改进(MDA-MIM)模型。该模型基于空洞卷积实现多尺度特征提取与融合。通过在MIM模型中的非平稳模块集成自注意力机制,调整不同时间步长和空间位置的权重,更精确地捕捉雷达回波数据中的非平稳性特征。在平稳模块引入局部注意力机制,以聚焦于局部区域内的特征关联,增强对平稳性特征的捕捉能力。真实数据集上的实验结果表明,MDA-MIM具有优秀的预测性能,在MSE、MAE、SSIM和PSNR等指标上均优于对比模型。 展开更多
关键词 雷达回波图 时空预测 注意力机制 多尺度特征
在线阅读 下载PDF
曲线和多头移动通道自注意力机制融合的点云语义分割
4
作者 卢健 郑雨飞 +2 位作者 梁有成 罗立果 苏盛斌 《西安工程大学学报》 2025年第2期28-38,共11页
针对点云语义分割中存在局部空间结构与深层次点云特征提取不充分问题,提出一种基于曲线和多头移动通道自注意力机制融合的三维点云语义分割网络。首先,曲线模块通过动态行走策略对点云进行分组和行走操作,获取远程点之间的关联性与几... 针对点云语义分割中存在局部空间结构与深层次点云特征提取不充分问题,提出一种基于曲线和多头移动通道自注意力机制融合的三维点云语义分割网络。首先,曲线模块通过动态行走策略对点云进行分组和行走操作,获取远程点之间的关联性与几何相关性。其次,引入多头移动通道自注意力机制模块,通过滑动窗口对通道进行划分,并构建多头自注意力聚合通道特征,以捕获点云深层次的语义信息。最后,提出了反向瓶颈模块,通过将低维度MLP嵌入到插值结构中加深网络的层次,增强特征的表达能力,同时有效改善了梯度消失和过拟合问题。实验结果表明:该模型在S3DIS第五区域数据集上的准确率为90.1%,平均交并比为68.6%;在ScanNet数据集上用于测试的平均交并比为70.9%。 展开更多
关键词 曲线模块 多头移动通道注意力机制 点云 语义分割 深度学习
在线阅读 下载PDF
基于多尺度特征融合和注意力机制的视频异常检测方法
5
作者 吴祥 肖剑 吉根林 《应用科学学报》 北大核心 2025年第2期234-244,共11页
视频画面中的运动物体在不同时刻往往呈现出多样的尺度大小,这给视频异常检测带来了一定的挑战。尽管传统的生成对抗网络在视频异常检测任务上取得了一定成效,但因其采用单一尺度的特征提取方法,无法充分捕获不同尺度物体的特征,从而限... 视频画面中的运动物体在不同时刻往往呈现出多样的尺度大小,这给视频异常检测带来了一定的挑战。尽管传统的生成对抗网络在视频异常检测任务上取得了一定成效,但因其采用单一尺度的特征提取方法,无法充分捕获不同尺度物体的特征,从而限制了其异常检测的性能。针对该问题,本文基于生成对抗网络结构,提出了一种基于多尺度特征融合和注意力机制的视频异常检测方法。使用大小不同的卷积核捕获不同感受野的特征,并将它们进行融合以获得多尺度的特征表示。此外,在生成器的转置卷积层后引入坐标注意力机制,自适应分配特征图权重,从而增强模型对关键特征的感知能力。在公开数据集UCSD Ped2和Avenue上的实验结果表明,本文方法的性能优于其他同类方法。 展开更多
关键词 视频异常检测 深度学习 生成对抗网络 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于孪生多尺度特征和注意力机制的迷彩伪装效果评估
6
作者 白雪琼 丁铖 +1 位作者 王紫莹 吕勇 《北京信息科技大学学报(自然科学版)》 2025年第2期7-14,共8页
传统伪装效果评估方法仅关注图像底层特征,特征提取依赖于先验知识,导致其鲁棒性较低、迁移性较差、检测性能欠佳。YOLO系列网络模型的引入虽提升了评估效率,但准确性仍有待提升。针对这些问题,提出了基于孪生多尺度特征和注意力机制的... 传统伪装效果评估方法仅关注图像底层特征,特征提取依赖于先验知识,导致其鲁棒性较低、迁移性较差、检测性能欠佳。YOLO系列网络模型的引入虽提升了评估效率,但准确性仍有待提升。针对这些问题,提出了基于孪生多尺度特征和注意力机制的迷彩伪装效果评估模型SMANet(Siamese multiscale features and attention network)。通过基于特征融合与边缘检测的模型F2-EDNet(feature fusion and edge detection net)的主干网络,提取伪装目标及其所处背景的多尺度上下文特征信息,并引入基于注意力机制的相似度预测模块,模拟人眼观察事物的注意力行为,细化了图像特征信息,进一步提升了模型对有效特征的敏感度。实验结果表明,SMANet模型准确率、精确率以及召回率分别达到80%、75%和80%,相比传统的和基于YOLO模型的伪装效果评估方法,更接近人眼视觉的真实感知。 展开更多
关键词 孪生神经网络 迷彩伪装效果评估 多尺度特征 注意力机制
在线阅读 下载PDF
基于多尺度注意力机制的无人机小目标检测算法
7
作者 冯迎宾 郭枭尊 晏佳华 《兵工学报》 北大核心 2025年第1期12-21,共10页
针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster ... 针对无人机航拍图像密集度大、目标尺寸小、背景复杂等难点,提出一种基于多尺度注意力机制的小目标检测(Small target detection of BPAN-EF_C2f YOLOv8s,SBE_YOLOv8s)算法,通过设计一种基于多尺度注意力机制的特征提取模块(EMA-Faster Block_C2f,EF_C2f),替换YOLOv8网络中的C2f模块,提高网络对小目标特征的提取能力;在特征融合网络中增加P1检测层,并设计一种跨尺度特征融合结构(Bi-Path Aggregation Network,BPAN),融合小目标特征信息;增加一个微小目标检测头,使用SIoU Loss作为边界框损失函数,提升小目标检测精度和网络收敛速度。在公开数据集VisDrone2019上进行实验验证。验证结果表明:与YOLOv8s算法相比,新算法在检测精度上提升了6.9%、mAP50提升了9.1%,模型参数量减少了44.6%,检测速度为28帧/s,新算法在小目标检测领域具有一定的实用性。 展开更多
关键词 多尺度注意力机制 YOLOv8s算法 特征提取 尺度特征融合 小目标检测
在线阅读 下载PDF
基于多尺度CNN与双阶段注意力机制的轴承工况域泛化故障诊断
8
作者 乔卉卉 赵二贤 +3 位作者 郝如江 刘婕 刘帅 王勇超 《振动与冲击》 北大核心 2025年第2期267-278,共12页
变工况条件下,基于深度学习的列车轮对轴承故障诊断模型的训练集与测试集通常来自不同的工况,不同工况振动信号数据分布差异引起的领域漂移问题导致模型准确率降低。基于域适应的变工况轴承故障诊断方法需要获取目标工况域的样本数据参... 变工况条件下,基于深度学习的列车轮对轴承故障诊断模型的训练集与测试集通常来自不同的工况,不同工况振动信号数据分布差异引起的领域漂移问题导致模型准确率降低。基于域适应的变工况轴承故障诊断方法需要获取目标工况域的样本数据参与训练,这在工程实际中难以实现,因此无法实现未知工况的轴承故障诊断。针对以上问题,提出了一种基于多尺度卷积神经网络与双阶段注意力机制网络(two-stage attention multiscale convolutional network model, TSAMCNN)模型的轴承工况域泛化故障诊断方法,其中多尺度特征提取模块从多个尺度上提取时域振动信号中更丰富的故障信息;然后,双阶段注意力模块从通道和空间两个维度自适应地增强故障敏感特征并抑制工况敏感特征和无用特征;最终,提取工况域不变故障特征,从而实现工况域泛化轴承故障诊断。通过变转速和变负载列车轮对轴承故障诊断试验,证明了TSAMCNN模型可提高变工况条件下轴承故障诊断的准确率、抗噪性能和工况域泛化能力。此外,对双阶段注意力机制的权重向量和模型各模块提取的特征进行可视化分析,提高了模型可解释性。 展开更多
关键词 列车轮对轴承 工况域泛化故障诊断 卷积神经网络(CNN) 多尺度特征提取 注意力机制
在线阅读 下载PDF
基于多尺度注意力机制的红外与可见光图像融合研究
9
作者 杨涛 刘福华 《无线互联科技》 2025年第5期46-52,共7页
红外与可见光图像的融合旨在提取和整合源图像中的信息,以生成包含重要且互补信息的结果。然而,目前的融合规则在有效提取最有价值的信息方面存在不足,无法很好地保留关键信息。文章在DenseFuse网络中引入了多头注意力模块(Multi-scale ... 红外与可见光图像的融合旨在提取和整合源图像中的信息,以生成包含重要且互补信息的结果。然而,目前的融合规则在有效提取最有价值的信息方面存在不足,无法很好地保留关键信息。文章在DenseFuse网络中引入了多头注意力模块(Multi-scale Attention Block,MAB)。该模块通过多尺度大核注意力机制,更有效地捕捉全局与局部信息。这使得融合后的图像具有更加丰富的语义信息,从而提升其在后续高层次视觉任务中的表现。 展开更多
关键词 图像融合 多尺度注意力机制 多头注意力模块
在线阅读 下载PDF
基于空间和通道注意力机制的高空作业场景安全带语义分割算法分析
10
作者 张历 许逵 +1 位作者 李鑫卓 张俊杰 《集成电路应用》 2025年第1期394-396,共3页
阐述一种高空作业场景下基于空间和通道注意力机制的安全带语义分割方法。该方法在Unet的基础上融合空间通道注意力机制,用于处理和连接编码部分与解码部分特征图,能够迅速分割安全带目标区域。经过实验测试,该方法能在高空作业场景下... 阐述一种高空作业场景下基于空间和通道注意力机制的安全带语义分割方法。该方法在Unet的基础上融合空间通道注意力机制,用于处理和连接编码部分与解码部分特征图,能够迅速分割安全带目标区域。经过实验测试,该方法能在高空作业场景下迅速分割安全带。 展开更多
关键词 语义分割 Unet 空间通道注意力机制
在线阅读 下载PDF
基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割算法
11
作者 党宁 李世峰 于坤義 《电子技术应用》 2025年第4期66-71,共6页
无人机在光伏系统的巡检过程中需要对光伏组件的缺陷进行准确和快速识别,为此提出了一种基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割网络。首先在传统的U-Net网络每个Stage加入多尺度伸缩卷积模块,从而对光伏组件缺陷进行分割,P... 无人机在光伏系统的巡检过程中需要对光伏组件的缺陷进行准确和快速识别,为此提出了一种基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割网络。首先在传统的U-Net网络每个Stage加入多尺度伸缩卷积模块,从而对光伏组件缺陷进行分割,PA达到了98.61%,与传统U-Net、FCN网络进行对比分析,准确率分别提高了0.32%和1.17%,算法消耗时间0.054 s,相较于对比的分割算法提高了0.006 s~0.013 s;然后将分割后的缺陷掩码mask和原图进行与操作,最后通过轻量级网络MobileNetV3对光伏组件缺陷(热斑、裂缝、鸟粪)进行检测并分类,精确率达到了98.82%,与SqueezeNet、ShuffleNet V2和GhostNet网络进行对比,分别提高了0.43%、1.08%和0.8%,平均检测时间0.026s,相较于对比的检测算法提高了0.002s~0.036s。实验结果表明基于多尺度伸缩卷积与注意力机制的光伏组件缺陷分割网络具有较高的准确率和识别速率。 展开更多
关键词 光伏组件缺陷 注意力机制 多尺度伸缩卷积 U-net网络 MobileNetV3网络
在线阅读 下载PDF
基于动态自适应通道注意力特征融合的小目标检测
12
作者 吴迪 赵品懿 +2 位作者 甘升隆 沈学军 万琴 《电子科技大学学报》 北大核心 2025年第2期221-232,共12页
针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的... 针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的问题。2)提出一种分组批量动态自适应通道注意力模块,增强弱语义小目标特征同时抑制无用信息,且在动态自适应通道注意力模块中设计新的激活函数和交并比损失函数,提升通道注意力表征能力。3)采用ResNet50作为骨干网络依次连接特征金字塔网络和Tri-Neck网络。实验结果表明,该方法在Pascal Voc 2007、Pascal Voc 2012上比YOLOv8算法mAP分别提升5.3%和6.2%,在MS COCO 2017数据集上AP和AP_S分别提升1.6%和2%,在SODA-D数据集上比YOLOv8算法AP提升0.9%。 展开更多
关键词 小目标检测 多尺度融合特征 特征金字塔 动态通道注意力 交并比损失函数
在线阅读 下载PDF
融合多尺度特征和注意力机制的超声甲状腺结节分割
13
作者 赵欣 黎红豆 王洪凯 《声学技术》 CSCD 北大核心 2024年第5期668-676,共9页
针对目前超声影像下甲状腺结节分割不够精准的问题,提出一种融合多尺度特征和注意力机制的超声甲状腺结节分割方法。该模型编码设计了多感受野通道选择模块,通过核心选择注意力对多个不同感受野的特征进行自适应加权组合,使包含目标的... 针对目前超声影像下甲状腺结节分割不够精准的问题,提出一种融合多尺度特征和注意力机制的超声甲状腺结节分割方法。该模型编码设计了多感受野通道选择模块,通过核心选择注意力对多个不同感受野的特征进行自适应加权组合,使包含目标的感受野通道占据主导。同时,设计自适应全局上下文模块自适应地提取瓶颈层多个尺度的全局上下文特征,以实现对瓶颈层高级语义的有效编码。此外,设计双注意力引导模块增强编解码器对等层之间的特征融合,以减少上采样过程中的信息损失。在公开的超声甲状腺结节数据集上进行实验,结果表明,文中所提方法优于其他对比网络,能更加精准地分割出甲状腺结节,有效提升了甲状腺结节的分割性能。 展开更多
关键词 深度学习 甲状腺结节 超声图像分割 多尺度特征提取 注意力机制
在线阅读 下载PDF
基于多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合
14
作者 邸敬 梁婵 +2 位作者 任莉 郭文庆 廉敬 《红外技术》 CSCD 北大核心 2024年第7期754-764,共11页
针对目前红外与可见光图像融合存在特征提取不足、融合图像目标区域不显著、细节信息缺失等问题,提出了一种多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合方法。首先,设计了多尺度对比度增强模块,以增强目标区域强度... 针对目前红外与可见光图像融合存在特征提取不足、融合图像目标区域不显著、细节信息缺失等问题,提出了一种多尺度对比度增强和跨维度交互注意力机制的红外与可见光图像融合方法。首先,设计了多尺度对比度增强模块,以增强目标区域强度信息利于互补信息的融合;其次,采用密集连接块进行特征提取,减少信息损失最大限度利用信息;接着,设计了一种跨维度交互注意力机制,有助于捕捉关键信息,从而提升网络性能;最后,设计了从融合图像到源图像的分解网络使融合图像包含更多的场景细节和更丰富的纹理细节。在TNO数据集上对提出的融合框架进行了评估实验,实验结果表明本文方法所得融合图像目标区域显著,细节纹理丰富,具有更优的融合性能和更强的泛化能力,主观性能和客观评价优于其他对比方法。 展开更多
关键词 红外与可见光图像融合 多尺度对比度增强 跨模态交互注意力机制 分解网络
在线阅读 下载PDF
融合LBP与并行注意力机制的微表情识别方法
15
作者 李帅超 李明泽 +1 位作者 孙嘉傲 卢树华 《北京航空航天大学学报》 北大核心 2025年第4期1404-1414,共11页
针对面部微表情变化强度弱、背景噪声干扰及特征区分度较小等问题,提出了一种融合LBP与并行注意力机制的微表情识别网络。该网络将RGB图像输入密集连接改进的Shuffle Stage分支提取面部全局特征,增强上下文语义信息关联;将LBP图像输入... 针对面部微表情变化强度弱、背景噪声干扰及特征区分度较小等问题,提出了一种融合LBP与并行注意力机制的微表情识别网络。该网络将RGB图像输入密集连接改进的Shuffle Stage分支提取面部全局特征,增强上下文语义信息关联;将LBP图像输入多尺度分层卷积神经网络构成的局部纹理特征分支,提取细节信息;双分支特征提取后,在网络后端引入并行注意力机制提高特征融合能力,抑制背景干扰,专注微表情特征兴趣区域;所提方法在CASME、CASME II和SMIC等3个公开数据集上进行了测试,识别准确率分别达到了85.18%、74.53%和81.19%;实验结果表明,所提方法有效提高了微表情识别准确率,优于当前诸多先进方法。 展开更多
关键词 微表情识别 密集连接 Shuffle Stage分支 多尺度分层卷积 并行注意力机制
在线阅读 下载PDF
基于注意力机制与多尺度融合的PCB缺陷检测 被引量:4
16
作者 陆维宽 周志立 +1 位作者 阮秀凯 聂赛赛 《无线电工程》 2024年第1期6-13,共8页
针对印制电路板(PCB)缺陷区域受背景干扰过多以及缺陷目标尺度较小导致缺陷检测精度低的问题,提出了一种基于注意力机制与多尺度融合的PCB缺陷检测方法。在YOLOv5模型的特征提取网络中,引入一种三维注意力模块,以增强缺陷目标特征的显著... 针对印制电路板(PCB)缺陷区域受背景干扰过多以及缺陷目标尺度较小导致缺陷检测精度低的问题,提出了一种基于注意力机制与多尺度融合的PCB缺陷检测方法。在YOLOv5模型的特征提取网络中,引入一种三维注意力模块,以增强缺陷目标特征的显著度,使模型更加注重目标特征;为充分利用微小缺陷目标的多尺度特征,在特征融合网络中引入加权双向特征金字塔网络(Bi-directional Feature Pyramid Network, BiFPN),减少缺陷目标特征信息的丢失,提高模型对微小缺陷目标的检测精度。实验结果表明,该方法能够准确检测出PCB图像中的缺陷目标,在保证实时性的同时,较原方法的平均检测精度提高了3.9%,表明了该方法的有效性。 展开更多
关键词 印制电路板 缺陷检测 YOLOv5 注意力机制 多尺度融合
在线阅读 下载PDF
基于自适应多尺度注意力机制的CNN-GRU矿用电动机健康状态评估 被引量:2
17
作者 谭东贵 袁逸萍 樊盼盼 《工矿自动化》 CSCD 北大核心 2024年第2期138-146,共9页
利用多传感器信息融合技术进行电动机健康状态评估时,矿用电动机监测数据中存在异常值和缺失值,而卷积神经网络和循环神经网络等深度学习模型在数据质量下降严重的情况下难以有效提取数据特征和更新网络权重,导致梯度消失或爆炸等问题... 利用多传感器信息融合技术进行电动机健康状态评估时,矿用电动机监测数据中存在异常值和缺失值,而卷积神经网络和循环神经网络等深度学习模型在数据质量下降严重的情况下难以有效提取数据特征和更新网络权重,导致梯度消失或爆炸等问题。针对上述问题,提出了一种基于自适应多尺度注意力机制的CNN-GRU(CNN-GRU-AMSA)模型,用于评估矿用电动机健康状态。首先,对传感器采集的电动机运行数据进行填补、剔除和标准化处理,并以环境温度变化作为依据对矿用电动机运行数据进行工况划分。然后,根据马氏距离计算出电动机电流、电动机三相绕组温度、电动机前端轴承温度和电动机后端轴承温度等健康评估指标的健康指数(HI),采用Savitzky–Golay滤波器对指标HI进行降噪、平滑、归一化处理,并结合主成分分析法计算的不同指标对矿用电动机的贡献度,对指标HI进行加权融合得到矿用电动机HI。最后,将矿用电动机HI输入CNN-GRU-AMSA模型中,该模型通过动态调整注意力权重,实现对不同尺度特征的信息融合,从而准确输出电动机健康状态评估结果。实验结果表明,与其他常见的深度学习模型CNN,CNN-GRU,CNN-LSTM,CNN-LSTM-Attention相比,CNN-GRU-AMSA模型在均方根误差、平均绝对误差、准确率、Macro F1及Micro F1等评价指标上更优,且预测残差的波动范围更小,稳定性更优。 展开更多
关键词 电动机健康状态评估 自适应多尺度注意力机制 CNN-GRU 多传感器信息融合 主成分分析
在线阅读 下载PDF
注意力机制下的多尺度图像超分辨率重建 被引量:1
18
作者 何启琛 何蕾 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第9期1255-1261,共7页
文章结合目前较流行的多尺度卷积和通道注意力机制,提出一种新颖的卷积神经网络(convolutional neural network,CNN)结构,即注意力机制下的多尺度卷积神经网络。该网络结构中加入大量的残差结构,加深了网络的深度;多尺度卷积的使用使该... 文章结合目前较流行的多尺度卷积和通道注意力机制,提出一种新颖的卷积神经网络(convolutional neural network,CNN)结构,即注意力机制下的多尺度卷积神经网络。该网络结构中加入大量的残差结构,加深了网络的深度;多尺度卷积的使用使该网络能从图片中提取更加丰富的信息;注意力机制的引入使网络处理高频信息时有更大的权重。实验结果表明,多尺度注意力机制卷积神经网络在图像超分辨率(super-resolution,SR)重建上取得了良好的表现,图像细节恢复效果令人满意。 展开更多
关键词 超分辨率(SR) 深度学习 卷积神经网络(CNN) 注意力机制 多尺度
在线阅读 下载PDF
基于注意力机制改进YOLO-V5的多尺度行人目标检测 被引量:1
19
作者 杨旭睿 冯宇平 +2 位作者 李悦 陶康达 戴家康 《青岛科技大学学报(自然科学版)》 CAS 2024年第5期127-134,共8页
为了提高在各类复杂场景中不同尺度行人目标的检测性能,提出了一种结合注意力机制的YOLO-V5多尺度改进算法。通过对YOLO-V5主干网络进行加深,进一步提高其特征提取能力,丰富深层语义信息;在算法中引入Coordinate Attention注意力机制,... 为了提高在各类复杂场景中不同尺度行人目标的检测性能,提出了一种结合注意力机制的YOLO-V5多尺度改进算法。通过对YOLO-V5主干网络进行加深,进一步提高其特征提取能力,丰富深层语义信息;在算法中引入Coordinate Attention注意力机制,使其能够关注输入特征图中的有效区域;在原始YOLO-V5基础之上,增加一组新的目标检测头部,来增强算法对小尺度目标的检测性能。所提出的方法在Citypersons行人数据集上进行了实验,将Citypersons验证集中的不同尺度目标细分为3种后,改进算法对这3种不同尺度行人目标的AP50指标分别达到了64.5%、66.6%、71.7%,Recall指标分别达到了53.0%、56.6%、61.7%,较原始YOLO-V5算法分别提高了3.8%、3.6%、2.3%和3.3%、4.7%、3.5%。实验结果表明,提出算法对多尺度行人目标的检测效果具有明显提升。 展开更多
关键词 行人目标检测 YOLO-V5 多尺度目标检测 注意力机制
在线阅读 下载PDF
基于差分卷积和通道注意力的JPEG彩色图像隐写分析
20
作者 王方馨 丁云瑶 +1 位作者 雷善中 王爱鑫 《信息技术与信息化》 2025年第1期70-73,共4页
目前大多数隐写分析方法均针对灰度图像进行设计,无法有效检测彩色图像。为解决这一问题,文章提出了基于差分卷积和通道注意力的JPEG彩色图像隐写分析方法,首先利用高通滤波器获取各个通道的隐写信息,其次设计差分卷积模块,引入中心差... 目前大多数隐写分析方法均针对灰度图像进行设计,无法有效检测彩色图像。为解决这一问题,文章提出了基于差分卷积和通道注意力的JPEG彩色图像隐写分析方法,首先利用高通滤波器获取各个通道的隐写信息,其次设计差分卷积模块,引入中心差分卷积提取纹理复杂区域的特征,并引入通道注意力机制SENet获取各个通道特征的重要程度。实验结果表明,所提方法针对隐写算法J-UNIWARD和UERD的检测精度均有明显提升,相比SRNet最大提升了1.55%,并且通过实验证明所提方法的模型复杂度更低。 展开更多
关键词 JPEG隐写分析 彩色图像 高通滤波器 差分卷积 通道注意力机制
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部