期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
基于多尺度融合神经网络的同频同调制单通道盲源分离算法
1
作者 付卫红 张鑫钰 刘乃安 《系统工程与电子技术》 北大核心 2025年第2期641-649,共9页
针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。... 针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。首先,编码模块提取出混合通信信号的编码特征;然后,分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息,再利用1×1卷积块捕获信号的局部和全局信息,估计出每个源信号的掩码;最后,解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明,所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号,而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量,同时网络也具有较强的泛化能力,可以高效面对复杂通信环境的挑战。 展开更多
关键词 单通道盲源分离 深度学习 同频同调制信号分离 多尺度融合递归卷积神经网络 通信信号处理
在线阅读 下载PDF
基于多尺度特征融合的图卷积神经网络迁移学习故障诊断方法
2
作者 曲晓荷 雷志伟 +3 位作者 李达 丁潇 贺凯迅 钟凯 《山东科技大学学报(自然科学版)》 北大核心 2025年第5期119-129,共11页
工业传感器信号本质上具有非欧几里得特性,现有深度学习方法难以充分挖掘信号数据的真实性,尤其在可变工况下。对此,本研究设计了一种基于多尺度特征融合的图卷积神经网络迁移学习(TL-MSGCNs)故障诊断方法。首先,从几何角度将原始数据... 工业传感器信号本质上具有非欧几里得特性,现有深度学习方法难以充分挖掘信号数据的真实性,尤其在可变工况下。对此,本研究设计了一种基于多尺度特征融合的图卷积神经网络迁移学习(TL-MSGCNs)故障诊断方法。首先,从几何角度将原始数据转换为加权图,以挖掘节点间隐藏的拓扑关联性。然后,设计具有深层和浅层结构的图卷积神经网络提取多尺度特征并进行融合增强。最后,通过迁移学习策略缓解因操作环境变化、设备老化等导致的源域和目标域间的分布差异。实验结果表明,TL-MSGCNs方法在故障诊断中具有显著优势。 展开更多
关键词 图卷神经网络 加权图 迁移学习 多尺度特征融合 故障诊断
在线阅读 下载PDF
基于多尺度注意力和图神经网络的多模态医学实体识别研究
3
作者 韩普 刘森嶺 陈文祺 《数据采集与处理》 北大核心 2025年第4期922-933,共12页
随着信息技术的快速发展,医疗健康领域中文文本、图像等多模态数据呈现出了爆发式增长。多模态医学实体识别(Multi-modal medical entity recognition,MMER)是多模态信息抽取的关键环节,近期受到了极大关注。针对多模态医学实体识别任... 随着信息技术的快速发展,医疗健康领域中文文本、图像等多模态数据呈现出了爆发式增长。多模态医学实体识别(Multi-modal medical entity recognition,MMER)是多模态信息抽取的关键环节,近期受到了极大关注。针对多模态医学实体识别任务中存在图像细节信息损失和文本语义理解不足问题,提出一种基于多尺度注意力和图神经网络(Multi-scale attention and dependency parsing graph convolution,MADPG)的MMER模型。该模型一方面基于ResNet引入多尺度注意力机制,协同提取不同空间尺度融合的视觉特征,减少医学图像重要细节信息丢失,进而增强图像特征表示,补充文本语义信息;另一方面利用依存句法结构构建图神经网络,捕捉医学文本中词汇间复杂语法依赖关系,以丰富文本语义表达,促进图像文本特征深层次融合。实验表明,本文提出的模型在多模态中文医学数据集上F_(1)值达到95.12%,相较于主流的单模态和多模态实体识别模型性能得到了明显提升。 展开更多
关键词 多模态医学实体识别 多尺度注意力 图卷神经网络 多模态融合 语义特征
在线阅读 下载PDF
基于递归卷积神经网络的煤矿智能监控安全生产管理平台关键技术研究 被引量:4
4
作者 刘开南 《中国煤炭》 2018年第12期84-87,共4页
针对煤矿井下亮度低、粉尘大、温度高、湿度大以及场景复杂等生产环境,使得监控视频存在目标对象影像不清晰、特征不明显以及干扰元素多等问题,研究了以递归卷积神经网络算法为核心的煤矿智能监控安全生产管理平台关键技术,该技术能够... 针对煤矿井下亮度低、粉尘大、温度高、湿度大以及场景复杂等生产环境,使得监控视频存在目标对象影像不清晰、特征不明显以及干扰元素多等问题,研究了以递归卷积神经网络算法为核心的煤矿智能监控安全生产管理平台关键技术,该技术能够获取高可靠的目标特征向量来提升对象的识别精度,实现在线实时和准确的目标检测与定位,实现煤矿智能监控安全生产管理中特定目标鲁棒性、精确识别和实时预警。 展开更多
关键词 煤矿智能监控 归卷 神经网络 安全生产 特征识别
在线阅读 下载PDF
基于递归卷积神经网络的移动机器人定位算法 被引量:6
5
作者 李少伟 王胜正 《计算机工程与应用》 CSCD 北大核心 2019年第10期240-243,249,共5页
移动机器人定位已成为机器人研究的重要任务。提出基于递归卷积神经网络的移动机器人定位(Recurrent Convolutional Neural Networks-Based Mobile Robot Localization,RCNN-MRL)算法。递归卷积神经网络(Recurrent Convolutional Neural... 移动机器人定位已成为机器人研究的重要任务。提出基于递归卷积神经网络的移动机器人定位(Recurrent Convolutional Neural Networks-Based Mobile Robot Localization,RCNN-MRL)算法。递归卷积神经网络(Recurrent Convolutional Neural Networks,RCNN)结合卷积神经网络(Convolutional Neural Networks,CNN)和递归神经网络(Recurrent Neural Networks,RNN)的特性,并依据机器人上嵌入的照相机拍摄的第一人称视角图像,RCNN-MRL算法利用RCNN实现自主定位。具体而言,先通过RCNN有效地处理多个连续图像,再利用RCNN作为回归模型,进而估计机器人位置。同时,设计双轮机器人移动,获取多个时间序列图像信息。最后,依据双轮机器人随机移动建立仿真环境,分析机器人定位性能。实验数据表明,提出的RCNN模型能够实现自主定位。 展开更多
关键词 移动机器人定位 第一人称视角 时间序列图像 归卷神经网络 双轮机器人
在线阅读 下载PDF
基于长期递归卷积网络的无创血压测量 被引量:16
6
作者 陈晓 杨瑶 《电子测量技术》 北大核心 2022年第4期139-146,共8页
血压是能够反映人们身体健康的一个重要指标,随着高血压人群分布范围日益增大,连续血压的监测变得愈发重要。本文提出了基于长期递归卷积网络对光电容积脉搏波进行血压连续无创测量的方法。首先将利用光电容积法采集到的脉搏波信号归一... 血压是能够反映人们身体健康的一个重要指标,随着高血压人群分布范围日益增大,连续血压的监测变得愈发重要。本文提出了基于长期递归卷积网络对光电容积脉搏波进行血压连续无创测量的方法。首先将利用光电容积法采集到的脉搏波信号归一化、阈值处理和特征提取,然后用长期递归卷积网络从脉搏波中计算出血压。实验表明,当光电容积脉搏波信号直接输入时,所提方法比长短期记忆网络的平均绝对误差和均方误差分别提升了56.00%和73.25%。将特征参数作为输入时,该实验比光电容积脉搏波信号直接输入时的平均绝对误差和均方误差提升了59.55%和87.41%,相比直接输入,特征参数输入的实验效果更好,实现了血压的精确测量。 展开更多
关键词 血压测量 脉搏波 长期归卷网络 神经网络 长短期记忆网络
在线阅读 下载PDF
基于多尺度特征融合和抓取质量评估的抓取生成方法 被引量:4
7
作者 高翔 谢海晟 +1 位作者 朱博 徐国政 《仪器仪表学报》 EI CAS CSCD 北大核心 2023年第7期101-111,共11页
在非结构化场景中,物体的6-Dof抓取是智能服务机器人领域的一项极具挑战性的任务。在该场景中,机器人需要应对不同大小和形状的物体以及环境噪声等因素的干扰,因此难以生成准确的抓取姿态。针对此问题本文提出一种基于多尺度特征融合和... 在非结构化场景中,物体的6-Dof抓取是智能服务机器人领域的一项极具挑战性的任务。在该场景中,机器人需要应对不同大小和形状的物体以及环境噪声等因素的干扰,因此难以生成准确的抓取姿态。针对此问题本文提出一种基于多尺度特征融合和抓取质量评估的6-Dof抓取姿态生成方法。首先,提出了自适应半径查询法,解决真实环境中点云采样不均匀导致的关键点查询异常的问题;其次设计了一种将多尺度特征和抓取质量评估融合的抓取生成网络,可以生成丰富的6-Dof抓取域;最后,定义了一种抓取质量评估方法,包含力闭合分数、接触面平整度、棱边分析和质心分数,并将这些标准应用在标准数据集上生成新的抓取置信分数标签,同时将这些标准融入抓取生成网络中。实验结果表明所述的方法与当前较为先进的方法FGC-GraspNet相比平均精度提升了5.9%,单物体抓取成功率提升了5.8%,多物体场景的抓取成功率提升了1.1%。综上所述,本文所提出的方法具备有效性和可行性,在单物体场景和多物体场景中具有较好的适应性。 展开更多
关键词 6-Dof抓取 关键点查询 多尺度特征融合 图卷神经网络 抓取质量评估
在线阅读 下载PDF
基于深度学习的癫痫异常信号检测和分类模型
8
作者 王剑 成婷 +1 位作者 宋政阳 张一丁 《电子测量技术》 北大核心 2025年第17期113-124,共12页
癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究... 癫痫是一种常见的神经系统疾病,其诊断主要依赖于脑电信号的分析。近年来,基于深度学习的方法在癫痫检测中得到了广泛应用,但这些方法通常依赖于单一的特征提取技术,且大多忽略了EEG信号的空间域特征。为了捕捉EEG信号的空域特征,研究人员尝试引入EEG的图表示,并结合图神经网络模型进行建模。然而,现有方法的图表示通常需要每个顶点遍历所有其他顶点来构建图结构,导致较高的时间复杂度,难以满足临床实时诊断的需求。针对上述挑战,首先提出了核心邻域图结构,在此基础上,进一步提出了基于双视图输入的癫痫自动检测和分类框架——DV-SeizureNet。该框架能够同时学习EEG信号的时域、频域和空域特征,实现癫痫异常检测和发作分类。在TUSZ数据集上的实验表明,DV-SeizureNet在癫痫检测任务中达到91.4%的准确率,优于现有最先进方法2.1%。在分类任务中,模型对4种癫痫发作类型的平均分类准确率为82.8%,F1-score为81.2%。DV-SeizureNet通过双视图学习框架,全面提取并融合EEG信号的时空频域特征,在癫痫异常检测和发作分类任务中表现优越,为临床诊断提供了可靠的辅助工具。 展开更多
关键词 癫痫检测 深度学习 EEG信号 双视图学习 图卷神经网络 多尺度特征融合
在线阅读 下载PDF
ObjectBoxG:基于GC3模块的目标检测算法
9
作者 张建宇 谢娟英 《智能系统学报》 CSCD 北大核心 2024年第6期1385-1394,共10页
随着对目标检测任务研究的不断深入,以ObjectBox检测器为代表的无锚框方法引起了研究者们的关注。然而,ObjectBox检测器不能充分利用多尺度特征,也未充分考虑目标中心点与全局信息关联。为此,借助图卷积神经网络的节点相互影响原理,提... 随着对目标检测任务研究的不断深入,以ObjectBox检测器为代表的无锚框方法引起了研究者们的关注。然而,ObjectBox检测器不能充分利用多尺度特征,也未充分考虑目标中心点与全局信息关联。为此,借助图卷积神经网络的节点相互影响原理,提出基于图谱方法的图卷积层模块GConv(graph convolution layer),学习图像全局特征;融合模块GConv与C3(cross stage partial network with 3 convolutions)得到GC3(graph C3 module)模块,进一步提取图像原始特征、细节特征以及全局特征;将GC3结合广义特征金字塔网络GFPN(generalized feature pyramid network),提出图广义特征金字塔网络GGFPN(graph generalized feature pyramid network),并嵌入ObjectBox算法,设计出ObjectBoxG算法。经典数据集的实验测试表明,提出的GC3模块比原C3模块具有更强特征提取能力;提出的GGFPN网络比GC3的特征学习能力更强;提出的ObjectBoxG算法具有优良的目标检测性能。 展开更多
关键词 图卷神经网络 特征提取 特征融合 目标检测 深度学习 无锚框方法 特征金字塔网络 Object-Box检测器 多尺度特征 全局特征
在线阅读 下载PDF
基于RCNN的问题相似度计算方法 被引量:12
10
作者 杨德志 柯显信 +1 位作者 余其超 杨帮华 《计算机工程与科学》 CSCD 北大核心 2021年第6期1076-1080,共5页
在搜索引擎、问答系统中利用深度学习的方法计算问题相似度是NLP领域研究的热点。结合卷积神经网络(CNN)和长短记忆网络(LSTM),提出了递归卷积神经网络(RCNN)问句相似度的计算方法,首先利用双向递归神经网络提取上下文信息,然后采用1D... 在搜索引擎、问答系统中利用深度学习的方法计算问题相似度是NLP领域研究的热点。结合卷积神经网络(CNN)和长短记忆网络(LSTM),提出了递归卷积神经网络(RCNN)问句相似度的计算方法,首先利用双向递归神经网络提取上下文信息,然后采用1D卷积神经网络将词嵌入信息与上下文信息进行融合;再利用全局最大池化提取关键信息来完成问句的语义表示;最后通过匹配层判断问句对的相似度。在Quora Question Pairs数据集上的实验结果表明,该相似度计算方法准确率为83.57%,优于其他方法。 展开更多
关键词 问题相似度 归卷神经网络 全局最大池化 孪生网络
在线阅读 下载PDF
CRNN心音分类系统硬件加速及实现 被引量:2
11
作者 周李敏 孙静 +2 位作者 杨宏波 潘家华 王威廉 《计算机工程与设计》 北大核心 2022年第11期3071-3078,共8页
为提高心音分类算法的实时性并将该分类算法移植至资源有限的移动设备中,提出一种适用于CRNN心音分类系统的硬件加速器。根据卷积层和LSTM层运算特点,通过交错缓存和分片缓存减小内存耗用,采用滑动窗运算机制和HLS指令优化最大限度地增... 为提高心音分类算法的实时性并将该分类算法移植至资源有限的移动设备中,提出一种适用于CRNN心音分类系统的硬件加速器。根据卷积层和LSTM层运算特点,通过交错缓存和分片缓存减小内存耗用,采用滑动窗运算机制和HLS指令优化最大限度地增加运算并行度,在FPGA平台中实现该加速方案。实验结果表明,与通用CPU相较,该CRNN加速器实现了29.79倍加速效果,能效比为通用GPU的20.2倍,具有较好的使用价值。 展开更多
关键词 心音分类 现场可编辑逻辑门阵列 归卷神经网络 并行计算 硬件加速
在线阅读 下载PDF
低质量无约束人脸图像下的超分辨率摆正
12
作者 孙强 谭晓阳 《计算机应用》 CSCD 北大核心 2017年第11期3226-3230,3237,共6页
针对人脸识别算法准确率受面部姿态、遮挡、图像分辨率等因素影响的问题,提出一种超分辨率摆正的方法,作用于低质量无约束输入图像上,生成高清晰度标准正面视图。主要通过估计输入图像与3D模型间的投影矩阵,产生标准正面视图,通过人脸... 针对人脸识别算法准确率受面部姿态、遮挡、图像分辨率等因素影响的问题,提出一种超分辨率摆正的方法,作用于低质量无约束输入图像上,生成高清晰度标准正面视图。主要通过估计输入图像与3D模型间的投影矩阵,产生标准正面视图,通过人脸对称性的特点,补全由于姿态、遮挡等原因所产生的面部缺失像素。在摆正过程中,为了提高图像分辨率以及避免面部像素信息丢失,引入一个16层的深度递归卷积神经网络进行超分辨率重构;并提出两个扩展:递归监督和跳跃链接,来降低网络训练难度以及缩小模型体量。在经过处理的LFW数据集上实验表明,该方法对人脸识别和性别检测算法的性能具有显著提升作用。 展开更多
关键词 人脸识别 人脸摆正 3D重建 超分辨率重构 深度归卷神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部