期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多尺度融合增强的服装图像解析方法 被引量:3
1
作者 陈丽芳 余恩婷 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第10期1385-1391,共7页
基于卷积神经网络中的各个层次特征,提出了一种基于多尺度融合增强的服装图像解析方法。通过融合增强模块,在考虑全局信息的基础上对包含的语义信息和不同尺度特征进行有效融合。结果表明:在Fashion Clothing测试集上的平均F1分数达到60... 基于卷积神经网络中的各个层次特征,提出了一种基于多尺度融合增强的服装图像解析方法。通过融合增强模块,在考虑全局信息的基础上对包含的语义信息和不同尺度特征进行有效融合。结果表明:在Fashion Clothing测试集上的平均F1分数达到60.57%,在LIP(Look Into Person)验证集上的平均交并比(mean intersection over union,MIoU)达到54.93%。该方法可以有效地提升服装图像解析精度。 展开更多
关键词 服装图像解析 多尺度融合增强网络 卷积神经网络
在线阅读 下载PDF
基于多尺度融合与USM的蒙古族家具纹样增强研究 被引量:2
2
作者 院霖享 董霙达 +1 位作者 多化琼 王明涛 《林产工业》 北大核心 2024年第2期29-33,共5页
为提高蒙古族家具纹样图像的全局对比度、颜色和精细细节,提出了一种基于改进的多尺度融合和USM的图像增强算法。首先对图像采用非锐化掩模技术增强纹样的细节区域,在此基础上进行白平衡处理,然后根据对比度的需求定义权重,最后进行多... 为提高蒙古族家具纹样图像的全局对比度、颜色和精细细节,提出了一种基于改进的多尺度融合和USM的图像增强算法。首先对图像采用非锐化掩模技术增强纹样的细节区域,在此基础上进行白平衡处理,然后根据对比度的需求定义权重,最后进行多尺度融合能更好地体现出图像中有价值的信息和样式。结果表明:该算法能突出纹样的细节部位,图像颜色更加自然直观,有效地增强了蒙古族家具纹样的图片;该方法可为缺失纹路的蒙古族家具纹样复原提供技术支撑,同时对蒙古族家具纹样的保护具有重要意义。 展开更多
关键词 多尺度融合增强 归一化权重 图像增强 非锐化掩模技术 蒙古族家具纹样
在线阅读 下载PDF
非结构化道路坑洼检测的YOLOv7算法优化
3
作者 曲雪莲 周福强 +1 位作者 谷玉海 王少红 《电子测量技术》 北大核心 2025年第14期146-153,共8页
在非结构化道路环境中,及时准确地检测道路坑洼对于保障交通安全至关重要。当前检测算法在复杂场景中存在漏检和精度不足的问题。为提升检测性能,提出了一种基于YOLOv7算法的改进方法。首先通过引入增强的分层多尺度特征融合模块,优化... 在非结构化道路环境中,及时准确地检测道路坑洼对于保障交通安全至关重要。当前检测算法在复杂场景中存在漏检和精度不足的问题。为提升检测性能,提出了一种基于YOLOv7算法的改进方法。首先通过引入增强的分层多尺度特征融合模块,优化特征提取能力;其次加入高效通道注意力机制,提高模型对目标区域的关注度;最后使用深度可分离卷积减少计算量,提高检测效率。改进后的模型在自制数据集上进行验证,与现有的YOLOv7x、YOLOv7-d6、YOLOv5x和YOLOv5m模型进行对比测试,并将改进后的模型进行公开数据集的迁移学习,采用精确率、召回率(R)、平均精度均值、参数量和每秒帧数作为评估指标。实验结果表明,改进模型在精确率、召回率和平均精度均值上分别提升了5.47%、4.42%和6.65%,在检测速度上也保持了较高的效率;与常用目标检测模型对比性能优异;进行公开数据集的迁移学习后,精确率、召回率和平均精度均值得到进一步提升。这一改进显著提升了模型的检测性能和鲁棒性,不仅增强了交通安全保障能力,也为无人驾驶提供了可靠的技术支持。 展开更多
关键词 非结构化道路 目标检测 YOLOv7算法 增强分层多尺度融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部