锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种...锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种基于弛豫电压的并行多尺度特征融合卷积模型(multi-scale feature fusion convolution model,MSFFCM)结合极端梯度提升树(XGBoost)的SOH估计方法。MSFFCM通过多层堆叠卷积模块提取弛豫电压数据的深层特征,同时利用并行多尺度注意力机制增强了多尺度特征的捕捉能力,并将这些特征与统计特征进行融合,以提升模型的特征提取和融合能力。针对XGBoost模型,本工作应用贝叶斯优化算法进行参数调优,从而在多源融合特征基础上实现高精度SOH估计。实验验证基于两种商用18650型号电池的多温度和多充放电策略数据集,结果表明该方法的均方根误差(RMSE)和平均绝对误差(MAE)均小于0.5%,明显优于传统方法。本工作为锂电池健康管理提供了一种不依赖特定充放电条件的有效估计工具,有望在复杂的实际应用中发挥重要作用。展开更多
为了解决施工场景下安全帽佩戴检测时,由于人员密集、遮挡和复杂背景等原因造成的小目标漏检和错检的问题,提出一种基于YOLOv8n的双重注意力机制的跨层多尺度安全帽佩戴检测算法。首先,设计微小目标检测头,以提高模型对小目标的检测能力...为了解决施工场景下安全帽佩戴检测时,由于人员密集、遮挡和复杂背景等原因造成的小目标漏检和错检的问题,提出一种基于YOLOv8n的双重注意力机制的跨层多尺度安全帽佩戴检测算法。首先,设计微小目标检测头,以提高模型对小目标的检测能力;其次,在特征提取网络中嵌入双重注意力机制,从而更加关注复杂场景下目标信息的特征捕获;然后,将特征融合网络替换成重参数化泛化特征金字塔网络(RepGFPN)改进后的跨层多尺度特征融合结构S-GFPN(Selective layer Generalized Feature Pyramid Network),以实现小目标特征层信息和其他特征层的多尺度融合,并建立长期的依赖关系,从而抑制背景信息的干扰;最后,采用MPDIOU(Intersection Over Union with Minimum Point Distance)损失函数来解决尺度变化不敏感的问题。在公开数据集GDUT-HWD上的实验结果表明,改进后的模型比YOLOv8n的mAP@0.5提升了3.4个百分点,对蓝色、黄色、白色和红色安全帽的检测精度分别提升了2.0、1.1、4.6和9.1个百分点,在密集、遮挡、小目标、反光和黑暗这5类复杂场景下的可视化检测效果也优于YOLOv8n,为实际施工场景中安全帽佩戴检测提供了一种有效方法。展开更多
针对人工目视排查大型旋转过滤设备网片缺陷时存在的效率低下,缺陷与背景之间边界模糊及网孔中的小水珠产生反光现象等问题,提出了一个基于多维特征融合的高效网片缺陷检测算法。引入了泊松图像增强技术,实现了缺陷目标与正常背景区域...针对人工目视排查大型旋转过滤设备网片缺陷时存在的效率低下,缺陷与背景之间边界模糊及网孔中的小水珠产生反光现象等问题,提出了一个基于多维特征融合的高效网片缺陷检测算法。引入了泊松图像增强技术,实现了缺陷目标与正常背景区域的平滑融合,增加了小样本缺陷数量的同时解决了缺陷数量分布不均匀的问题。在YOLOv8中融入轻量多维卷积改进的C2fLWDC(C2flightweight multi-dimensional convolution)模块及加权多特征增强模块,既增强了网络对缺陷特征的提取又实现了各级特征的高效融合,提升了对多尺度缺陷样本的表征能力。采用EIOU(efficient intersection over union)定位损失函数,加速了对缺陷目标的准确定位。网片数据集检测结果表明,改进后的算法mAP(mean average precision)达到92%,相较于原始模型提升了16.8个百分点,能很好地完成缺陷目标的检测任务。展开更多
文摘为了解决施工场景下安全帽佩戴检测时,由于人员密集、遮挡和复杂背景等原因造成的小目标漏检和错检的问题,提出一种基于YOLOv8n的双重注意力机制的跨层多尺度安全帽佩戴检测算法。首先,设计微小目标检测头,以提高模型对小目标的检测能力;其次,在特征提取网络中嵌入双重注意力机制,从而更加关注复杂场景下目标信息的特征捕获;然后,将特征融合网络替换成重参数化泛化特征金字塔网络(RepGFPN)改进后的跨层多尺度特征融合结构S-GFPN(Selective layer Generalized Feature Pyramid Network),以实现小目标特征层信息和其他特征层的多尺度融合,并建立长期的依赖关系,从而抑制背景信息的干扰;最后,采用MPDIOU(Intersection Over Union with Minimum Point Distance)损失函数来解决尺度变化不敏感的问题。在公开数据集GDUT-HWD上的实验结果表明,改进后的模型比YOLOv8n的mAP@0.5提升了3.4个百分点,对蓝色、黄色、白色和红色安全帽的检测精度分别提升了2.0、1.1、4.6和9.1个百分点,在密集、遮挡、小目标、反光和黑暗这5类复杂场景下的可视化检测效果也优于YOLOv8n,为实际施工场景中安全帽佩戴检测提供了一种有效方法。
文摘针对人工目视排查大型旋转过滤设备网片缺陷时存在的效率低下,缺陷与背景之间边界模糊及网孔中的小水珠产生反光现象等问题,提出了一个基于多维特征融合的高效网片缺陷检测算法。引入了泊松图像增强技术,实现了缺陷目标与正常背景区域的平滑融合,增加了小样本缺陷数量的同时解决了缺陷数量分布不均匀的问题。在YOLOv8中融入轻量多维卷积改进的C2fLWDC(C2flightweight multi-dimensional convolution)模块及加权多特征增强模块,既增强了网络对缺陷特征的提取又实现了各级特征的高效融合,提升了对多尺度缺陷样本的表征能力。采用EIOU(efficient intersection over union)定位损失函数,加速了对缺陷目标的准确定位。网片数据集检测结果表明,改进后的算法mAP(mean average precision)达到92%,相较于原始模型提升了16.8个百分点,能很好地完成缺陷目标的检测任务。
文摘针对水下环境复杂性带来的多尺度目标检测挑战,提出了改进算法WPS-YOLOv8。设计了小波池化卷积模块(wavelet pooling convolution,WPConv),该模块通过小波池化技术降低通道压缩后特征图的分辨率,有效抑制了传统下采样过程中产生的频率混叠伪影,提升了特征提取质量和表达能力。提出了局部逐点分组重排卷积模块(partial pointwise group shuffle convolution,PGConv),该模块通过结合局部卷积与逐点卷积,能够在减少信息冗余的同时保持通道间的信息交互,弥补了深度可分离卷积的不足,增强了特征融合效果。提出了ShapeLoss损失函数,综合考虑影响不同尺度目标检测精度的因素,通过集成Shape-IoU和Shape-NWD两种损失测度,有效提升了对多尺度目标的总体检测精度。实验结果显示,相较于YOLOv8,WPS-YOLOv8在URPC2018和UTDAC2020水下数据集上的平均精度均值(mean average precision,mAP)分别提升了8.6和4.4个百分点,展现了其在水下多尺度目标检测中的出色表现。