期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
基于内在生成机制的多尺度结构相似性图像质量评价 被引量:14
1
作者 孙彦景 杨玉芬 +1 位作者 刘东林 施文娟 《电子与信息学报》 EI CSCD 北大核心 2016年第1期127-134,共8页
该文针对多尺度结构相似性(Multiple-scale Structural SIMilarity,MSSIM)图像质量评价算法对图像信息不确定部分度量能力的不足,结合人类视觉系统(HVS),提出基于内在生成机制(internal generative mechanism)的i MSSIM算法。首先采用... 该文针对多尺度结构相似性(Multiple-scale Structural SIMilarity,MSSIM)图像质量评价算法对图像信息不确定部分度量能力的不足,结合人类视觉系统(HVS),提出基于内在生成机制(internal generative mechanism)的i MSSIM算法。首先采用基于逐段式自回归(Piecewise Auto Regressive,PAR)模型的内在生成机制将失真图像和原始图像分解成采用MSSIM算法评分的图像内容预测部分和采用PSNR评分的图像信息不确定部分;然后采用均方误差(MSE)进行加权来联合这两部分评分获得最终结果。在基准数据库上完成的对比实验表明:该算法不仅在不同失真类型上性能最好,且在6个公开数据库上的性能优于现有算法。 展开更多
关键词 图像质量评价 多尺度结构相似性 内在生成机制 逐段式自回归模型
在线阅读 下载PDF
基于多尺度非局部约束的单幅图像超分辨率算法 被引量:7
2
作者 潘宗序 禹晶 +1 位作者 肖创柏 孙卫东 《自动化学报》 EI CSCD 北大核心 2014年第10期2233-2244,共12页
多尺度结构自相似性是指图像中的大量物体具有相同尺度以及不同尺度相似结构的性质.本文提出了一种基于多尺度非局部约束的单幅图像超分辨率算法,结合多尺度非局部方法和多尺度字典学习方法将蕴含在图像多尺度自相似结构中的附加信息加... 多尺度结构自相似性是指图像中的大量物体具有相同尺度以及不同尺度相似结构的性质.本文提出了一种基于多尺度非局部约束的单幅图像超分辨率算法,结合多尺度非局部方法和多尺度字典学习方法将蕴含在图像多尺度自相似结构中的附加信息加入到重建图像中.多尺度非局部方法在图像金字塔的不同层中搜索相似图像块,并利用多尺度相似图像块间的关系建立非局部约束项,通过正则化约束获取多尺度自相似结构中的附加信息;多尺度字典学习方法将图像金字塔作为字典学习的样本,通过字典学习使样本中的多尺度相似图像块在字典下具有稀疏表示形式,从而获取多尺度自相似结构中的附加信息.实验表明,与ScSR、SISR、NLIBP、CSSS、ASDSAR和mSSIM等算法相比,本文的算法取得了更好的超分辨率重建效果. 展开更多
关键词 超分辨率 多尺度结构相似性 稀疏表示 非局部方法
在线阅读 下载PDF
有监督深度学习的地震资料提高分辨率处理方法 被引量:2
3
作者 李斐 牛文利 +2 位作者 刘达伟 王永刚 黄研 《石油地球物理勘探》 EI CSCD 北大核心 2024年第4期702-713,共12页
地震资料分辨率直接影响后续处理和解释成果精度,因此备受关注。深度学习方法具备自动提取深层特征和出色的非线性逼近能力,在反问题求解中广泛应用。在地震勘探领域,深度卷积网络中的卷积算子与地震数据的褶积模型相吻合,因而有望通过... 地震资料分辨率直接影响后续处理和解释成果精度,因此备受关注。深度学习方法具备自动提取深层特征和出色的非线性逼近能力,在反问题求解中广泛应用。在地震勘探领域,深度卷积网络中的卷积算子与地震数据的褶积模型相吻合,因而有望通过智能化手段显著提升地震资料的分辨率。目前,针对卷积神经网络提高地震资料分辨率方面的研究发展迅速,但问题的核心在于设计适合、有效的网络结构和损失函数。为此,提出一种基于强监督学习的地震资料高分辨率处理方法。该方法充分利用地下结构的空间连续性,借鉴图像超分辨率重建的思想,设计了一种生成对抗网络结构,用以提高地震资料的纵向分辨率;同时,采用L1损失和多尺度结构相似性(MS-SSIM)损失相结合的损失函数提高感知质量,以提高网络的高分辨率处理效果。合成数据和实际地震数据的应用结果显示,相较于常规损失函数,文中采用的损失函数可以显著提升智能算法的处理效果,明显改善地震数据同相轴的连续性,且高频细节信息更丰富,验证了该方法的可行性和有效性。 展开更多
关键词 有监督深度学习 多尺度结构相似性损失 L1损失 生成对抗网络 图像超分辨率重建
在线阅读 下载PDF
基于改进CycleGAN的光学图像迁移生成水下小目标合成孔径声纳图像算法研究 被引量:8
4
作者 李宝奇 黄海宁 +1 位作者 刘纪元 李宇 《电子学报》 EI CAS CSCD 北大核心 2021年第9期1746-1753,共8页
针对循环生成对抗网络CycleGAN(Cycle Generative Adversarial Networks)在光学图像迁移生成水下小目标合成孔径声纳图像过程中存在质量差和速度慢的问题,本文提出一种新的特征提取单元SDK(Selective Dilated Kernel),并利用SDK设计了... 针对循环生成对抗网络CycleGAN(Cycle Generative Adversarial Networks)在光学图像迁移生成水下小目标合成孔径声纳图像过程中存在质量差和速度慢的问题,本文提出一种新的特征提取单元SDK(Selective Dilated Kernel),并利用SDK设计了一个新的生成器网络SDKNet.与此同时,提出了一种新的循环一致损失函数MS-CCLF(Multiscale Cyclic Consistent Loss Function),MS-CCLF增加了图像多尺度结构相似性约束.在自建的图像迁移数据集OPT-SAS上,本文SM-CycleGAN(Selective and Multiscale Cycle Generative Adversarial Networks)比原始CycleGAN的图像迁移质量提升4.64%,生成器网络参数降低4.13MB,运算时间减少0.143s.实验结果表明,SM-CycleGAN更适合水下小目标光学图像到合成孔径声纳图像的迁移任务. 展开更多
关键词 光学图像迁移生成合成孔径声纳图像 生成对抗网络 循环生成对抗网络 可选择空洞核网络 多尺度结构相似性
在线阅读 下载PDF
基于改进CycleGAN的浑浊水体图像增强算法研究 被引量:3
5
作者 李宝奇 黄海宁 +2 位作者 刘纪元 刘正君 韦琳哲 《电子与信息学报》 EI CSCD 北大核心 2022年第7期2504-2511,共8页
针对循环生成对抗网络(Cycle Generative Adversarial Networks,CycleGAN)在浑浊水体图像增强中存在质量差和速度慢的问题,该文提出一种可扩展、可选择和轻量化的特征提取单元BSDK(Bottleneck Selective Dilated Kernel),并利用BSDK设... 针对循环生成对抗网络(Cycle Generative Adversarial Networks,CycleGAN)在浑浊水体图像增强中存在质量差和速度慢的问题,该文提出一种可扩展、可选择和轻量化的特征提取单元BSDK(Bottleneck Selective Dilated Kernel),并利用BSDK设计了一个新的生成器网络BSDKNet。与此同时,提出一种多尺度损失函数MLF(Multi-scale Loss Function)。在自建的浑浊水体图像增强数据集TC(Turbid and Clear)上,该文BM-CycleGAN比原始CycleGAN的精度提升3.27%,生成器网络参数降低4.15MB,运算时间减少0.107s。实验结果表明BMCycleGAN适合浑浊水体图像增强任务。 展开更多
关键词 图像增强 生成对抗网络 循环生成对抗网络 深度可分离空洞卷积 多尺度结构相似性
在线阅读 下载PDF
基于增强生成器条件生成对抗网络的单幅图像去雾 被引量:7
6
作者 赵扬 李波 《计算机应用》 CSCD 北大核心 2021年第12期3686-3691,共6页
大气中烟雾等粒子的存在会导致肉眼捕获场景的能见度降低。大多数传统的去雾方法都是预期估计雾霾场景的透射率、大气光,并利用大气散射模型恢复无雾图像。这些方法尽管取得了显著进展,但由于过分依赖苛刻的先验条件,在缺乏相应先验条... 大气中烟雾等粒子的存在会导致肉眼捕获场景的能见度降低。大多数传统的去雾方法都是预期估计雾霾场景的透射率、大气光,并利用大气散射模型恢复无雾图像。这些方法尽管取得了显著进展,但由于过分依赖苛刻的先验条件,在缺乏相应先验条件下的去雾效果并不理想。因此,提出一种端到端的一体化除雾网络,使用增强生成器的条件生成对抗网络(CGAN)直接恢复无雾图像。生成器端以U-Net作为基础架构,通过“整合-加强-减去”的促进策略,用一个简单有效的增强解码器,增强解码器中特征的恢复。另外,加入了多尺度结构相似性(MS-SSIM)损失函数,增强图像的边缘细节恢复。在合成数据集和真实数据集上的实验中,该模型的峰值信噪比(PSNR)和结构相似性(SSIM)明显优于传统的暗通道先验(DCP)、一体化除雾网络(AOD-Net)、渐进式特征融合网络(PFFNet)、条件Wasserstein生成对抗网络(CWGAN)去雾模型。实验结果表明,相较于对比算法,所提网络能够恢复出更接近于地面真相的无雾图像,除雾效果更优。 展开更多
关键词 深度学习 图像去雾 生成对抗网络 增强解码器 多尺度结构相似性损失函数
在线阅读 下载PDF
全参考图像质量指标评价分析 被引量:8
7
作者 王成 刘坤 杜砾 《现代电子技术》 2023年第21期39-43,共5页
图像是人类从外界获取信息的重要来源,通过客观的图像质量评价,能帮助人们在浏览图像时关注高质量的图像,提升感观体验。因此,如何对大量的图像质量进行客观而有效的评价,已成为图像信息处理领域的研究热点之一。根据对参考图像(即无失... 图像是人类从外界获取信息的重要来源,通过客观的图像质量评价,能帮助人们在浏览图像时关注高质量的图像,提升感观体验。因此,如何对大量的图像质量进行客观而有效的评价,已成为图像信息处理领域的研究热点之一。根据对参考图像(即无失真的原始图像)的依赖程度,客观图像评价方法可分为全参考图像质量评价、部分参考图像质量评价和无参考图像质量评价。针对全参考图像质量评价方法进行分析,比较了常见的4种全参考图像质量评价指标,验证了这些评价指标分数与主观视觉评估相一致。 展开更多
关键词 图像质量评价 全参考 平均主观分数 人类视觉系统 结构相似性 多尺度结构相似性
在线阅读 下载PDF
基于DCGANs的半片光伏组件电致发光图像增强技术 被引量:3
8
作者 何翔 《应用光学》 CAS 北大核心 2023年第2期314-322,共9页
针对半片光伏组件电致发光(electroluminescence,EL)缺陷自动识别过程中训练用样本不足导致模型过拟合的问题,采用深度卷积生成对抗网络(deep convolutional generative adversarial networks,DCGANs)生成可控制属性的半片光伏组件EL图... 针对半片光伏组件电致发光(electroluminescence,EL)缺陷自动识别过程中训练用样本不足导致模型过拟合的问题,采用深度卷积生成对抗网络(deep convolutional generative adversarial networks,DCGANs)生成可控制属性的半片光伏组件EL图像,再采用多尺度结构相似性(multiscale structural similarity,MS-SSIM)指标对生成的EL图像与拍摄的EL图像之间的相似程度进行了评估。评估结果得到,使用DCGANs生成的所有类型半片光伏组件的EL图像与拍摄的EL图像的MS-SSIM指标都大于0.55,大部分的MS-SSIM值在0.7附近。在分类模型的训练过程中,测试集准确率随着训练集中生成图像数量的增加而升高,当生成图像数量达到6 000张时,测试集准确率达到97.92%。实验结果表明,采用DCGANs能够生成高质量且可控制属性的半片光伏组件EL图像,较好地解决因缺少训练样本而导致的模型过拟合问题。 展开更多
关键词 深度卷积生成对抗网络(DCGANs) 电致发光(EL) 多尺度结构相似性(MS-SSIM) 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部