期刊文献+
共找到41篇文章
< 1 2 3 >
每页显示 20 50 100
多尺度特征增强与交互融合的遥感小目标检测
1
作者 李云红 魏小双 +5 位作者 苏雪平 李丽敏 田谷丰 郝特吉 冯准若 李仕博 《西北大学学报(自然科学版)》 北大核心 2025年第2期277-285,共9页
针对遥感图像小目标检测任务中,存在目标细节纹理信息模糊导致特征提取与融合不佳、小目标漏检等问题,提出了一种基于多尺度特征增强与交互融合的遥感小目标检测算法。首先,采用跨层多分支连接结构的多尺度特征增强(multiscale feature ... 针对遥感图像小目标检测任务中,存在目标细节纹理信息模糊导致特征提取与融合不佳、小目标漏检等问题,提出了一种基于多尺度特征增强与交互融合的遥感小目标检测算法。首先,采用跨层多分支连接结构的多尺度特征增强(multiscale feature enhancement,MFE)模块,利用Split分流操作丰富和增强不同梯度获取的纹理特征信息,同时引入轻量级特征幻影模块Ghost进行通道线性变换,生成更多有效的特征细节信息流,以增强对图像中局部细节特征信息的关注;其次,构建特征交互融合(feature interaction fusion,FIF)模块,引入多分支串并行的卷积块与自适应机制的池化块,交互输入特征的通道语义信息和空间特征变换,捕获全局上下文信息,精确小目标的关键位置信息,加强特征信息之间的相关性,实现细粒度特征的多维度交互融合。使用公开的光学遥感数据集DIOR验证所提算法,改进后的网络模型平均精度值为87.6%,与NPMMR-Det、YOLOv7、YOLOv5等其他7种优秀算法相比均有提高,改进后的遥感图像小目标检测算法取得了更好的检测精度。 展开更多
关键词 遥感图像小目标检测 多尺度特征增强 Split分流 自适应机制 细节特征交互融合
在线阅读 下载PDF
基于多尺度时空特征融合的视频异常事件检测 被引量:1
2
作者 李歌 肖洪兵 +2 位作者 闫善武 王瑜 孙梅 《燕山大学学报》 北大核心 2025年第1期74-82,共9页
在视频异常事件检测的问题上,现有的研究方法未充分考虑场景中的背景信息干扰和目标尺度变化,导致检测精度普遍较低。针对此类问题,提出了一种融合多尺度时空信息的异常事件检测方法。首先,应用一种坐标注意力的方法,使模型更多地关注... 在视频异常事件检测的问题上,现有的研究方法未充分考虑场景中的背景信息干扰和目标尺度变化,导致检测精度普遍较低。针对此类问题,提出了一种融合多尺度时空信息的异常事件检测方法。首先,应用一种坐标注意力的方法,使模型更多地关注异常事件发生的区域。其次,为了提取到各层次丰富的时空信息,采用空洞卷积网络构建一种多分支多尺度的特征融合模块。最后,考虑到正常事件的多样性,提出一种规则分数,以便在测试阶段进一步更新记忆增强模块中的记忆项,提高对异常事件的检测精度。在CUHK Avenue和ShanghaiTech数据集的相关实验中,提出方法的帧级AUC分别达到了88.7%和77.5%,且满足视频检测的实时性要求,验证了该方法的可行性和有效性。 展开更多
关键词 视频异常检测 无监督学习 空洞卷积 多尺度时空特征融合 记忆增强模块
在线阅读 下载PDF
时空网络特征融合的病理步态识别方法
3
作者 李聪聪 王斌 +1 位作者 李亚南 李一帆 《计算机工程与设计》 北大核心 2025年第7期2109-2116,共8页
针对病理步态识别方法中存在空间信息或时序信息丢失的问题,提出一种时空网络特征融合的病理步态识别方法。结合卷积网络和时序网络,学习更具判别性的步态时空特征。卷积网络中引入阶梯融合式空洞空间金字塔池化,获得更鲁棒的多尺度融... 针对病理步态识别方法中存在空间信息或时序信息丢失的问题,提出一种时空网络特征融合的病理步态识别方法。结合卷积网络和时序网络,学习更具判别性的步态时空特征。卷积网络中引入阶梯融合式空洞空间金字塔池化,获得更鲁棒的多尺度融合步态表征。联合卷积核替换和残差块改进对卷积网络进一步优化。时序网络中引入全局与局部时空特征融合模块,形成对时空特征的更细节表达。融合空间特征和时空特征,减轻Bi LSTM学习空间特征中时间模式的过程中丢失空间特征的影响。所提模型在自建数据集和GAIT-IST数据集上的准确率分别达到了97.69%和94.16%,实验结果表明,该方法较其它方法取得了更优的性能。 展开更多
关键词 病理步态识别 时空网络 特征融合 时空特征 阶梯融合式空洞空间金字塔池化 多尺度特征 全局与局部时空特征融合模块
在线阅读 下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络 被引量:2
4
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积块注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
在线阅读 下载PDF
边缘信息引导多级尺度特征融合的显著性目标检测方法 被引量:2
5
作者 王向军 李名洋 +2 位作者 王霖 刘峰 王玮 《红外与激光工程》 EI CSCD 北大核心 2023年第1期253-262,共10页
针对基于FCN和U型网络架构的深度学习显著性目标检测方法提取的显著性图存在边界不清晰和结构不完整的问题,文中提出了一种基于边缘信息引导多级尺度特征融合网络(EGMFNet)。EGMFNet使用多通道融合残差块(RCFBlock)以嵌套的U型网络架构... 针对基于FCN和U型网络架构的深度学习显著性目标检测方法提取的显著性图存在边界不清晰和结构不完整的问题,文中提出了一种基于边缘信息引导多级尺度特征融合网络(EGMFNet)。EGMFNet使用多通道融合残差块(RCFBlock)以嵌套的U型网络架构作为主干模型。同时,在网络的较低层级引入具有边缘信息引导的全局空间注意力模块(EGSAM)以增强空间特征及边缘特征。此外,在损失函数中引入了图像边界损失,用于提升显著性图的质量并在学习过程中保留更加清晰的边界。在四个基准数据集上进行实验,实验结果表明,文中方法的F值较典型方法提升1.5%、2.7%、1.8%和1.6%,验证了EGMFNet网络模型的有效性。 展开更多
关键词 显著性目标检测 多尺度特征融合 边缘信息引导 空间注意力模块 边界损失函数
在线阅读 下载PDF
基于多尺度特征结合细节恢复的单幅图像去雾方法 被引量:6
6
作者 张世辉 路佳琪 +1 位作者 宋丹丹 张晓微 《电子与信息学报》 EI CSCD 北大核心 2022年第11期3967-3976,共10页
为提高单幅图像去雾方法的准确性及其去雾结果的细节可见性,该文提出一种基于多尺度特征结合细节恢复的单幅图像去雾方法。首先,根据雾在图像中的分布特性及成像原理,设计多尺度特征提取模块及多尺度特征融合模块,从而有效提取有雾图像... 为提高单幅图像去雾方法的准确性及其去雾结果的细节可见性,该文提出一种基于多尺度特征结合细节恢复的单幅图像去雾方法。首先,根据雾在图像中的分布特性及成像原理,设计多尺度特征提取模块及多尺度特征融合模块,从而有效提取有雾图像中与雾相关的多尺度特征并进行非线性加权融合。其次,构造基于所设计多尺度特征提取模块和多尺度特征融合模块的端到端去雾网络,并利用该网络获得初步去雾结果。再次,构造基于图像分块的细节恢复网络以提取细节信息。最后,将细节恢复网络提取出的细节信息与去雾网络得到的初步去雾结果融合得到最终清晰的去雾图像,实现对去雾后图像视觉效果的增强。实验结果表明,与已有代表性的图像去雾方法相比,所提方法能够对合成图像及真实图像中的雾进行有效去除,且去雾结果细节信息保留完整。 展开更多
关键词 图像去雾 细节恢复 多尺度特征 非线性加权融合
在线阅读 下载PDF
基于多尺度特征融合的快速单目图像深度估计 被引量:3
7
作者 孔慧芳 房亮 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2022年第3期332-335,432,共5页
文章针对目前采用深度学习估计单目图像深度中存在推理时间长、物体边缘细节不清晰的问题,设计一种基于多尺度特征融合的快速单目图像深度估计网络。将GhostNet运用到单目图像深度估计网络的编码网络中,提高网络的编码速度;采用反卷积... 文章针对目前采用深度学习估计单目图像深度中存在推理时间长、物体边缘细节不清晰的问题,设计一种基于多尺度特征融合的快速单目图像深度估计网络。将GhostNet运用到单目图像深度估计网络的编码网络中,提高网络的编码速度;采用反卷积和双线性插值设计解码网络,并通过跨层连接将编码网络的特征与解码网络的特征融合增强深度图中物体的边缘细节。在通用数据集NYU Depth V2上训练和测试的结果表明,该文设计的网络模型得到的深度图细节保持较为完整,同时具有较高的推理速度。 展开更多
关键词 深度学习 单目图像深度估计 边缘细节 多尺度特征融合 推理速度
在线阅读 下载PDF
融合局部和全局特征的息肉分割模型 被引量:1
8
作者 张攀峰 杨贺 +2 位作者 神显豪 程小辉 杜慧 《电子测量技术》 北大核心 2024年第16期100-109,共10页
针对现有模型在息肉分割中存在复杂区域分割困难、边缘细节信息丢失、泛化能力不足等问题,提出一种融合局部和全局特征的息肉分割模型。以卷积神经网络和Transformer作为并行编码器,使模型可以兼顾多种尺度的局部细节特征和全局语义特征... 针对现有模型在息肉分割中存在复杂区域分割困难、边缘细节信息丢失、泛化能力不足等问题,提出一种融合局部和全局特征的息肉分割模型。以卷积神经网络和Transformer作为并行编码器,使模型可以兼顾多种尺度的局部细节特征和全局语义特征;在跳跃连接处构建注意力增强模块和多尺度残差模块,前者强化模型对重要信息的关注度,后者高效探索目标区域并准确预测其边界,同时促进不同层次特征之间的交互;在解码阶段采用基于残差的逐步上采样特征融合方式汇聚各阶段特征,进一步增强模型的感知能力,丰富息肉特征;最后使用高效预测头促进浅层特征的融合,输出分割结果。该模型在多个对比实验中表现最优,同次优模型相比,在Kvasir、CVC-ClinicDB数据集上,mDice平均提升了1.21%;mIoU平均提升了1.82%;在CVC-ColonDB、ETIS数据集上,mDice平均提升了2.67%,mIoU平均提升了2.83%。实验结果表明,相比于现有主流模型,该模型具有较优的分割精度和泛化性能。 展开更多
关键词 息肉分割 TRANSFORMER 卷积神经网络 注意力增强模块 多尺度残差模块 特征融合
在线阅读 下载PDF
多分支多尺度点云补全网络
9
作者 陈晓雷 王荣 《计算机工程》 北大核心 2025年第8期330-340,共11页
现有点云补全网络无法同时提取高质量的点云全局特征和局部特征,丢失点云细节信息与坐标信息。为此,提出一种基于多分支多尺度特征融合的点云补全网络,该网络的核心创新在于分层渐进式特征提取与融合机制。在编码阶段,该网络首先通过联... 现有点云补全网络无法同时提取高质量的点云全局特征和局部特征,丢失点云细节信息与坐标信息。为此,提出一种基于多分支多尺度特征融合的点云补全网络,该网络的核心创新在于分层渐进式特征提取与融合机制。在编码阶段,该网络首先通过联合特征提取模块(JFEM),对输入的三种不同分辨率的点云数据进行多尺度特征学习,依次提取包含丰富语义信息的全局特征和精细的局部特征,以最大化保留关键信息,然后利用细节保持池化(DP-Pool)模块对特征进行降维,避免传统池化操作造成的细节损失,并结合多分支编码结构实现全局与局部特征的高效融合,确保不同尺度的特征能够互补增强。在解码阶段,该网络通过点云重构(PCR)模块逐步恢复点云的几何结构,并利用多分支解码结构对不同层次的特征进行精细化上采样,最终生成高保真、高密度的补全点云。实验结果表明,所提网络的性能优于目前先进的10种点云补全网络,能进一步提高点云补全质量。 展开更多
关键词 点云补全 多分支 多尺度 特征融合 细节保持
在线阅读 下载PDF
基于MobileViT和多尺度特征聚合的遥感图像目标检测 被引量:1
10
作者 梁礼明 冯耀 +1 位作者 龙鹏威 李仁杰 《智能系统学报》 CSCD 北大核心 2024年第5期1168-1177,共10页
针对遥感图像目标检测存在复杂背景干扰、微小目标提取难和目标多尺度差异问题,提出一种基于MobileViT和多尺度特征聚合的遥感图像目标检测算法(FWM-YOLOv7t)。首先设计多尺度特征聚合模块,建立遥感目标上下文依赖关系,提升多尺度目标... 针对遥感图像目标检测存在复杂背景干扰、微小目标提取难和目标多尺度差异问题,提出一种基于MobileViT和多尺度特征聚合的遥感图像目标检测算法(FWM-YOLOv7t)。首先设计多尺度特征聚合模块,建立遥感目标上下文依赖关系,提升多尺度目标和小目标检测精度;然后利用MobileViT模块,融合卷积神经网络和视觉Transformer优点,有效编码局部和全局信息,抑制非目标噪声干扰;最后引入Wise-IoU损失函数,重点关注普通质量锚框,提高算法检测性能。在公共数据集RSOD和NWPU VHR-10上的实验结果表明,FWMYOLOv7t能够显著提升遥感图像目标检测的平均准确率。与其他目标检测算法相比,FWM-YOLOv7t对复杂背景目标、小目标和多尺度目标的检测更有效。 展开更多
关键词 深度学习 遥感图像 目标检测 YOLOv7-tiny MobileViT模块 多尺度特征融合 上下文信息 Wise-IoU
在线阅读 下载PDF
多尺度特征融合与新型判别器的无监督分割 被引量:1
11
作者 韩宗桓 刘名果 +4 位作者 李珅 陈立家 田敏 兰天翔 梁倩 《计算机工程与应用》 CSCD 北大核心 2023年第7期152-162,共11页
工厂在智能化升级过程中,有很多应用场景需要用到语义分割。然而使用全监督语义分割方法需要耗费大量人力成本进行样本标注,所以研究无监督语义分割方法很有必要。针对本地某碳素厂石墨电极压印字符的语义分割问题,提出了一种无监督语... 工厂在智能化升级过程中,有很多应用场景需要用到语义分割。然而使用全监督语义分割方法需要耗费大量人力成本进行样本标注,所以研究无监督语义分割方法很有必要。针对本地某碳素厂石墨电极压印字符的语义分割问题,提出了一种无监督语义分割方法 CycleGAN-Seg。结合跨层连接和空洞空间池化金字塔(ASPP)的思想,构建了新型多尺度特征融合生成器,加入了改进的注意力模块以提升网络性能。同时提出一种新的U形判别器对重构图像进行判别。在石墨电极表面压印字符数据集语义分割实验中,MIoU值可达70.81%,分割效果基本满足识别需要,有望在该工业场景中替代全监督学习方法,以节省人工标注成本,达到快速训练和部署的目的。 展开更多
关键词 多尺度特征融合 注意力模块 无监督分割 表面压印字符
在线阅读 下载PDF
融合坐标注意力与多尺度特征的轻量级安全帽佩戴检测 被引量:7
12
作者 李忠飞 冯仕咏 +2 位作者 郭骏 张云鹤 徐飞翔 《工矿自动化》 CSCD 北大核心 2023年第11期151-159,共9页
针对现有煤矿工人安全帽佩戴检测算法存在检测精度与速度难以取得较好平衡的问题,以YOLOv4模型为基础,提出了一种融合坐标注意力与多尺度的轻量级模型M-YOLO,并将其用于安全帽佩戴检测。该模型使用融入混洗坐标注意力模块的轻量化特征... 针对现有煤矿工人安全帽佩戴检测算法存在检测精度与速度难以取得较好平衡的问题,以YOLOv4模型为基础,提出了一种融合坐标注意力与多尺度的轻量级模型M-YOLO,并将其用于安全帽佩戴检测。该模型使用融入混洗坐标注意力模块的轻量化特征提取网络S-MobileNetV2替换YOLOv4的特征提取网络CSPDarknet53,在减少相关参数量的前提下,有效改善了特征之间的联系;将原有空间金字塔池化结构中的并行连接方式改为串行连接,有效提高了计算效率;对特征融合网络进行改进,引入具有高分辨率、多细节纹理信息的浅层特征,以有效加强对检测目标特征的提取,并将原有Neck结构中的部分卷积修改为深度可分离卷积,在保证检测精度的前提下进一步降低了模型的参数量和计算量。实验结果表明,与YOLOv4模型相比,M-YOLO模型的平均精度均值仅降低了0.84%,但计算量、参数量、模型大小分别减小了74.5%,72.8%,81.6%,检测速度提高了53.4%;相较于其他模型,M-YOLO模型在准确率和实时性方面取得了良好的平衡,满足在智能视频监控终端上嵌入式加载和部署的需求。 展开更多
关键词 目标检测 安全帽佩戴检测 坐标注意力模块 轻量化 多尺度特征融合
在线阅读 下载PDF
行人再识别中的多尺度特征融合网络 被引量:2
13
作者 贾熹滨 鲁臣 +1 位作者 Siluyele Ntazana Mazimba Windi 《北京工业大学学报》 CAS CSCD 北大核心 2020年第7期788-794,共7页
针对行人再识别中待识别对象和目标对象的体态、衣服的颜色等外貌特征非常相似时,模型难以正确识别行人身份这一难点问题,提出了一个基于残差网络ResNet50改进的多尺度特征融合网络.通过利用最后一层特征协同多个中间层特征,采用顶层到... 针对行人再识别中待识别对象和目标对象的体态、衣服的颜色等外貌特征非常相似时,模型难以正确识别行人身份这一难点问题,提出了一个基于残差网络ResNet50改进的多尺度特征融合网络.通过利用最后一层特征协同多个中间层特征,采用顶层到下层递进式加和的特征层融合机制来提取行人图像特征,确保模型在总体特征表述基础上,提高对微小细节信息的表征能力.在3个主流的行人再识别公共数据集Market-1501、CUHK03(D)和DukeMTMC-reID上进行了实验,与2018年同类型的行人再识别网络DaRe相比,提出的方法比Market-1501数据集的Rank-1指标提升了2.82%,mAP指标提升了4.32%;比DukeMTMC-reID数据集的Rank-1指标提升了5.45%,mAP指标提升了6.4%.实验结果证明了所提出方法的有效性. 展开更多
关键词 行人再识别 多尺度特征融合 卷积神经网络 局部特征 特征可视化 细节信息
在线阅读 下载PDF
基于全尺度特征融合的自监督单目深度估计
14
作者 王聪 陈莹 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2023年第5期667-675,共9页
针对自监督单目深度估计生成的深度图边界模糊、伪影过多等问题,提出基于全尺度特征融合模块(FSFFM)和链式残差池化模块(CRPM)的深度网络编解码结构.在解码时,将编码器得到的高分辨率和相同分辨率特征与之前解码器得到的低分辨率特征以... 针对自监督单目深度估计生成的深度图边界模糊、伪影过多等问题,提出基于全尺度特征融合模块(FSFFM)和链式残差池化模块(CRPM)的深度网络编解码结构.在解码时,将编码器得到的高分辨率和相同分辨率特征与之前解码器得到的低分辨率特征以及上一级逆深度图进行融合,使网络学习到的特征既包含全局信息又包含局部信息.使用CRPM从融合特征中获取背景上下文信息,最终得到更精确的深度图.在KITTI数据集上进行了实验,与之前工作相比,该方法深度值绝对误差降低了7.8%,阈值为1.25的精确度提高了1.1%,其结果优于现有大多数自监督单目深度估计算法. 展开更多
关键词 深度估计 自监督 尺度特征融合模块 链式残差池化模块
在线阅读 下载PDF
结合Segformer与增强特征金字塔的文本检测方法 被引量:1
15
作者 张铭泉 张泽恩 +1 位作者 曹锦纲 邵绪强 《智能系统学报》 CSCD 北大核心 2024年第5期1111-1125,共15页
针对自然场景文本检测算法中的小尺度文本漏检、类文本像素误检以及边缘定位不准确的问题,提出一种基于Segformer和增强特征金字塔的文本检测模型。该模型首先采用基于混合Transformer(mix Trans-former,MiT)的编码器生成多尺度特征图;... 针对自然场景文本检测算法中的小尺度文本漏检、类文本像素误检以及边缘定位不准确的问题,提出一种基于Segformer和增强特征金字塔的文本检测模型。该模型首先采用基于混合Transformer(mix Trans-former,MiT)的编码器生成多尺度特征图;然后,在具有特征金字塔结构解码器的上采样部分,提出级联融合注意力模块,通过全局平均池化、全局最大池化和Ghost模块获取全局通道信息并保留文本特征;接着,在解码器的特征融合部分提出两级正交融合注意力模块,利用非对称卷积分别从水平和垂直方向进行信息增强;最后,利用可微分二值化对结果进行后处理。将本文方法在ICDAR2015、ShopSign1265和MTWI 3个数据集上进行实验,相比于其他8种方法,本文方法的F值均为最优,分别达到了87.8%、59.1%和74.8%。结果表明,本文方法有效提高了文本检测的准确率。 展开更多
关键词 文本检测 特征金字塔 注意力机制 Segformer Ghost模块 多尺度特征融合 平均池化 最大池化
在线阅读 下载PDF
基于多重多尺度融合注意力网络的建筑物提取 被引量:8
16
作者 杨栋杰 高贤君 +3 位作者 冉树浩 张广斌 王萍 杨元维 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第10期1924-1934,共11页
针对全卷积神经网络模型在进行建筑物提取时易产生过度分割以及内部空洞的问题,提出基于多重多尺度融合注意力网络(MMFA-Net)的高分辨率遥感影像建筑物提取方法.该方法以U-Net为主体架构,设计2个模块:多重高效通道注意力(MECA)和多尺度... 针对全卷积神经网络模型在进行建筑物提取时易产生过度分割以及内部空洞的问题,提出基于多重多尺度融合注意力网络(MMFA-Net)的高分辨率遥感影像建筑物提取方法.该方法以U-Net为主体架构,设计2个模块:多重高效通道注意力(MECA)和多尺度特征融合注意力(MFA). MECA设计在模型跳跃连接中,通过权重配比强化有效特征信息,避免注意力向无效特征的过渡分配;采用多重特征提取,减少有效特征的损失. MFA被嵌入模型底部,结合并行连续中小尺度空洞卷积与通道注意力,获得不同的空间特征与光谱维度特征,缓解空洞卷积造成的大型建筑物像素缺失问题. MMFA-Net通过融合MECA和MFA,提高了建筑物提取结果的完整度和精确率.将模型在WHU、 Massachusetts和自绘建筑物数据集上进行验证,在定量评价方面优于其他5种对比方法,F_(1)分数和IoU分别达到93.33%、87.50%;85.38%、74.49%和88.46%、79.31%. 展开更多
关键词 深度学习 高分辨遥感影像 建筑物提取 多尺度特征融合 高效通道注意力模块 U-Net
在线阅读 下载PDF
基于多感受野特征增强的改进EfficientDet遥感目标检测算法 被引量:5
17
作者 张润梅 贾振楠 +3 位作者 李佳祥 吴路路 徐信芯 袁彬 《电光与控制》 CSCD 北大核心 2024年第7期53-60,96,共9页
针对遥感图像目标检测中小目标检测精度低、目标密集和尺度形态多样等问题,在轻量化网络EfficientDet-D0目标检测算法的基础上,在加权双向特征金字塔网络(BiFPN)进行特征融合时加入小尺度以及高一级尺度的中间信息,对BiFPN网络进行重构... 针对遥感图像目标检测中小目标检测精度低、目标密集和尺度形态多样等问题,在轻量化网络EfficientDet-D0目标检测算法的基础上,在加权双向特征金字塔网络(BiFPN)进行特征融合时加入小尺度以及高一级尺度的中间信息,对BiFPN网络进行重构,充分利用不同尺度信息,提高多尺度目标检测精度;同时在BiFPN中加入融合空洞卷积和快速归一化融合方法的特征增强模块,补强因特征图缩放所丢失的特征信息,进一步提高检测精度;另外,采用参数动态的Dynamic ReLU激活函数对原始网络中的参数静态的Swish激活函数进行改进。改进EfficientDet算法在不影响轻量化特点的前提下,对公开数据集Pascal VOC的目标检测平均精度均值(mAP)相较于原始算法提升11.9个百分点,亦优于其他目标检测算法。针对遥感图像数据集RSOD,通过Imgaug数据增强库对已有的936幅遥感图像数据集进行数据增广,利用改进模型进行迁移学习,未进行数据增广和增广后的目标检测结果分别为88.38%和96.78%,证明所提算法可以满足实际应用中对遥感图像目标的检测要求。 展开更多
关键词 深度学习 遥感图像 目标检测 EfficientDet 多尺度特征融合 特征增强模块 Dynamic ReLU
在线阅读 下载PDF
CSD-YOLOv8的输电线路故障目标检测
18
作者 马旭 王锐 +6 位作者 邓军 常驰 郝帅 李添麒 刘峥岐 李国亮 赵晴 《西安科技大学学报》 北大核心 2025年第2期383-392,共10页
针对无人机巡检输电线路过程中待检测目标受复杂背景干扰、故障目标部分遮挡以及目标多尺度造成传统算法难以准确检测的问题,提出一种基于CSD-YOLOv8的输电线路故障目标检测方法。首先,以YOLOv8网络作为基础框架,并在其主干网络中引入... 针对无人机巡检输电线路过程中待检测目标受复杂背景干扰、故障目标部分遮挡以及目标多尺度造成传统算法难以准确检测的问题,提出一种基于CSD-YOLOv8的输电线路故障目标检测方法。首先,以YOLOv8网络作为基础框架,并在其主干网络中引入空间金字塔池化将不同尺度特征进行融合;然后,在检测网络头部中引入深度可分离卷积,并将其与交叉卷积连接模块结合,实现对部分遮挡目标的准确检测;此外,设计基于通道注意力机制的特征融合模块对不同层级特征进行加权融合,提高复杂背景下故障目标特征信息提取能力;最后,利用某电力巡检部门近5年的巡检数据对所提出算法进行验证。结果表明:相比于4种经典对比算法,所提方法在对12种故障类型检测效果的综合指标最好,平均检测精度为94.7%,召回率为93.0%。与此同时,所提算法具有较好的实时性,对于分辨率为1280×720的图像检测速度为45帧/s,为输电线路的智能巡检奠定了坚实的理论基础。 展开更多
关键词 YOLOv8 多尺度检测 通道注意力机制 特征融合 深度可分离模块
在线阅读 下载PDF
噪声背景下梅尔频率倒谱系数与多注意力网络在电机故障诊断中的应用
19
作者 宋恩哲 朱仁杰 +2 位作者 靖海国 姚崇 柯赟 《哈尔滨工程大学学报》 北大核心 2025年第3期475-485,共11页
针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模... 针对电机实际工作过程中存在噪声干扰导致故障诊断精度下降的问题,本文提出了一种基于梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络的故障诊断方法。通过梅尔频率倒谱系数动态特征提取噪声信号中的低频信息,并结合卷积注意力模块的自适应调节能力及多特征融合策略进一步减少噪声对故障诊断的干扰。通过电机台架数据验证了该方法在噪声条件下诊断的可行性,然而该方法受梅尔频率倒谱系数参数与网络结构的直接影响,因此具体分析了不同参数条件对抗噪性能的影响。实验结果表明:在信噪比-10 dB噪声背景下,梅尔频率倒谱系数动态特征与多注意力融合卷积神经网络相结合的故障诊断方法仍保持90%以上的诊断精度。 展开更多
关键词 电机 故障诊断 噪声环境 梅尔频率倒谱系数 卷积神经网络 多尺度 卷积注意力模块 特征融合
在线阅读 下载PDF
单幅图像去模糊的多尺度特征提取和融合网络
20
作者 武婷婷 万少杰 《南京邮电大学学报(自然科学版)》 2025年第5期57-65,共9页
近年来,多层网络在图像去模糊领域取得了较大进展,但其性能受限于特征提取和残差连接。为解决这些问题,提出了一种多尺度融合网络(Multi‑Scale Feature Extraction and Fusion Net‑work,MSFN)用于图像去模糊,通过多尺度输入与输出,增强... 近年来,多层网络在图像去模糊领域取得了较大进展,但其性能受限于特征提取和残差连接。为解决这些问题,提出了一种多尺度融合网络(Multi‑Scale Feature Extraction and Fusion Net‑work,MSFN)用于图像去模糊,通过多尺度输入与输出,增强了对图像特征的提取能力。MSFN利用其特征自适应细节增强(Adaptive Detail Enhancement,ADE)模块和跨尺度特征融合(Cross‑Scale Feature Fusion,CSFF)模块,在不同网络深度上捕获不同尺度的特征,优化了特征提取过程,并有效融合了多尺度信息。实验结果表明,所提出的算法在定量分析上表现出色,并且在主观视觉效果上也得到了显著提升,这些结果充分证明了所提网络的卓越性能。 展开更多
关键词 图像去模糊 深度学习 多尺度 细节增强 特征融合
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部