期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
基于多尺度线性全局注意力的运动员检测算法
1
作者 林芷薇 杨祖元 +1 位作者 王斯秋 杨超 《计算机工程》 CAS CSCD 北大核心 2024年第7期352-359,共8页
运动员在比赛过程中的快速移动且频繁遮挡,使得对视频中运动员检测容易出现漏检、多检、检测精度下降等问题。现有的主流方法对于移动和遮挡情况下的运动员检测表现不佳。当运动员受到遮挡后,检测目标框的尺度变化增大。引入cutout作为... 运动员在比赛过程中的快速移动且频繁遮挡,使得对视频中运动员检测容易出现漏检、多检、检测精度下降等问题。现有的主流方法对于移动和遮挡情况下的运动员检测表现不佳。当运动员受到遮挡后,检测目标框的尺度变化增大。引入cutout作为数据增强的方法来模拟遮挡情况,提出基于多尺度线性全局注意力Efficient ViT模块的运动员检测算法。使用线性全局注意力模块减少计算量,并辅以卷积模块来增强其局部的特征提取能力,通过轻量级小卷积聚合不同注意力头部的token获得多尺度信息,增强其全局特征提取能力。针对损失函数部分,选择EIo U作为边界框损失,加入检测框与目标框的宽高距离,使得检测框和真实目标框在尺度上更为贴近。在Sports MOT数据集中4个公开的篮球比赛视频数据集上的实验结果表明,该算法取得了98.0%准确率和98.2%的平均精度均值,相较于YOLOv5算法,其精度提升了4%,高置信度的平均精度均值提升了8.7%。 展开更多
关键词 YOLOv5算法 运动员检测 多尺度线性全局注意力 数据增强 边界框损失
在线阅读 下载PDF
多尺度残差与全局注意力结合的低剂量CT去噪
2
作者 孙亚楠 陈平 潘晋孝 《应用光学》 北大核心 2025年第2期292-299,共8页
针对目前低剂量CT(low dose computed tomography,LDCT)图像去噪方法由于缺乏对空间特征和去噪任务之间的内在联系,导致重建图像的纹理细节丢失和过于平滑的问题,提出了一种结合多尺度密集残差和全局注意力的图像去噪网络。通过引入多... 针对目前低剂量CT(low dose computed tomography,LDCT)图像去噪方法由于缺乏对空间特征和去噪任务之间的内在联系,导致重建图像的纹理细节丢失和过于平滑的问题,提出了一种结合多尺度密集残差和全局注意力的图像去噪网络。通过引入多尺度密集残差块来提取图像的多尺度特征信息,并通过全局注意力机制(global attention mechanism,GAM)来关注模型不同通道间的跨维信息,同时加入跳跃连接进一步扩大全局交互特征的范围,最后使用多尺度特征损失函数增强图像纹理细节,避免图像过于平滑的问题。经过实验验证,本文所提出的算法在峰值信噪比(PSNR)和结构相似度(SSIM)这两项指标上分别达到了35.1838 dB、0.9605,在去除噪声的同时很好地保留了图像细节信息,优于其他算法。 展开更多
关键词 低剂量CT 图像去噪 多尺度密集残差 全局注意力机制
在线阅读 下载PDF
面向分割的局部分块与全局多尺度注意力机制
3
作者 谭荆彬 赵旭俊 苏慧娟 《计算机工程与设计》 北大核心 2025年第4期1141-1148,共8页
现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个... 现有的注意力机制仅增强特征图的通道或空间维度,未能充分捕捉细微视觉元素和多尺度特征变化。为解决此问题,提出一种基于局部分块与全局多尺度特征融合的注意力机制(patch and global multiscale attention,PGMA)。将特征图分割成多个小块,分别计算这些小块的注意力得分,增强对局部信息的感知能力。使用一组空洞卷积计算整个特征图的得分,获得全局多尺度信息的权衡。实验中,将PGMA集成到U-Net、DeepLab、SegNet等语义分割网络中,有效提升了它们的分割性能。这表明PGMA在增强CNN性能方面优于当前主流方法。 展开更多
关键词 卷积神经网络 注意力机制 局部信息 分块策略 细节感知 全局多尺度信息 语义分割
在线阅读 下载PDF
线性注意力机制优化的光学与SAR影像匹配方法
4
作者 何巧 《遥感信息》 CSCD 北大核心 2024年第5期171-178,共8页
针对光学与SAR影像间存在非线性辐射畸变导致匹配正确率低的问题,提出线性注意力机制优化的光学与SAR影像匹配方法。该方法利用SuperPoint的描述分支将融合像素级的梯度方向直方图特征进行特征图维度重构,在维度层面增强特征的语义识别... 针对光学与SAR影像间存在非线性辐射畸变导致匹配正确率低的问题,提出线性注意力机制优化的光学与SAR影像匹配方法。该方法利用SuperPoint的描述分支将融合像素级的梯度方向直方图特征进行特征图维度重构,在维度层面增强特征的语义识别能力;在特征匹配阶段,利用线性注意力机制对SuperGlue算法进行优化,同时采用单样本分类准确性约束、全样本全局一致性约束以及局部范围结构一致等多种约束,构建多尺度损失函数进行训练,增强不同尺度下错误匹配的特征区分。利用6组光学与SAR遥感影像进行实验对比,结果表明,该方法相比HOPC、AWOG、CMM-Net及SuperGlue方法,匹配正确率、匹配效率均有较大提升。 展开更多
关键词 影像匹配 灰度信息 特征融合 线性注意力机制 多尺度损失函数
在线阅读 下载PDF
融入多尺度双线性注意力的轻量化眼底疾病多分类网络 被引量:4
5
作者 李朝林 张荣芬 刘宇红 《计算机应用研究》 CSCD 北大核心 2022年第7期2183-2189,2195,共8页
现在大多数眼疾分类方法都是对单一类别疾病不同级别进行分类,并且网络模型存在参数量大、计算复杂等问题。为解决这些问题,提出一种轻量化的眼底疾病多分类网络MELCNet,该网络以PPLCNet为主干网络,由输入层特征提取、并行多尺度结构、... 现在大多数眼疾分类方法都是对单一类别疾病不同级别进行分类,并且网络模型存在参数量大、计算复杂等问题。为解决这些问题,提出一种轻量化的眼底疾病多分类网络MELCNet,该网络以PPLCNet为主干网络,由输入层特征提取、并行多尺度结构、双线性SE注意力模块、深度可分离卷积、更小参数计算的h-swish激活函数构成,能关注到不同尺度不同疾病的关键患病信息。实验结果表明,提出的多尺度注意力轻量网络模型具有较少的参数量和计算复杂度,并在所选的四种眼底疾病和正常眼底图像的多分类上取得了优异的分类结果,在内部组合数据集测试集上的分类准确率相对于ResNet-50提升1.11%,相对于Xie等人提出的类似眼疾多分类网络在公开数据集cataract测试集上提升2.5%,相较于其他轻量级分类网络在眼底疾病多分类领域具有较高的准确率以及较强的鲁棒性。 展开更多
关键词 眼底疾病分类 并行多尺度 线性注意力 轻量化
在线阅读 下载PDF
结合全局注意力机制的实时语义分割网络 被引量:5
6
作者 李涛 高志刚 +2 位作者 管晟媛 徐久成 马媛媛 《智能系统学报》 CSCD 北大核心 2023年第2期282-292,共11页
针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic s... 针对轻量化网络结构从特征图提取有效语义信息不足,以及语义信息与空间细节信息融合模块设计不合理而导致分割精度降低的问题,本文提出一种结合全局注意力机制的实时语义分割网络(global attention mechanism with real time semantic segmentation network,GaSeNet)。首先在双分支结构的语义分支中引入全局注意力机制,在通道与空间两个维度引导卷积神经网来关注与分割任务相关的语义类别,以提取更多有效语义信息;其次在空间细节分支设计混合空洞卷积块,在卷积核大小不变的情况下扩大感受野,以获取更多全局空间细节信息,弥补关键特征信息损失。然后重新设计特征融合模块,引入深度聚合金塔池化,将不同尺度的特征图深度融合,从而提高网络的语义分割性能。最后将所提出的方法在CamVid数据集和Vaihingen数据集上进行实验,通过与最新的语义分割方法对比分析可知,GaSeNet在分割精度上分别提高了4.29%、16.06%,实验结果验证了本文方法处理实时语义分割问题的有效性。 展开更多
关键词 实时语义分割 全局注意力机制 多尺度特征融合 混合空洞卷积 卷积神经网络 金字塔池化 感受野 特征提取
在线阅读 下载PDF
融合边缘增强与多尺度注意力的皮肤病变分割 被引量:1
7
作者 白雪飞 靳智超 +1 位作者 王文剑 马亚楠 《计算机科学》 CSCD 北大核心 2023年第4期96-102,共7页
皮肤病变形状、颜色、大小类型多样,给皮肤病变的准确分割带来了巨大挑战。针对这一问题,提出了一种融合边缘增强与多尺度注意力的皮肤病变分割网络(BEMA U-Net)。该网络包含一个用于提取全局特征的空间多尺度注意力模块和一个用于增强... 皮肤病变形状、颜色、大小类型多样,给皮肤病变的准确分割带来了巨大挑战。针对这一问题,提出了一种融合边缘增强与多尺度注意力的皮肤病变分割网络(BEMA U-Net)。该网络包含一个用于提取全局特征的空间多尺度注意力模块和一个用于增强病变区域边缘特征的边缘增强模块,将两种模块添加到以编码解码结构为主干的网络(U-Net)中,能够有效抑制病变图像中背景噪声的干扰并强化病灶的边缘细节。此外,设计了混合损失函数,结合Dice Loss和Boundary Loss,并在训练过程中实现混合损失函数的动态权重调整,使网络对病变图像整体特征和边缘细节特征的提取进行多重监督,缓解了皮肤病变图像分割中毛发干扰和边缘模糊的问题。在ISIC2017和ISIC2018两个公开数据集上的实验结果表明,所提算法对皮肤病变部位的分割图像边缘连续、轮廓清晰,具有更好的分割效果。 展开更多
关键词 皮肤病变分割 空间多尺度注意力 全局特征 边缘增强 U-Net
在线阅读 下载PDF
基于多尺度加权引导滤波的弱光图像细节增强研究
8
作者 翟书娟 索艳滨 李亚平 《激光杂志》 北大核心 2025年第4期140-145,共6页
图像传感器在捕捉弱光图像时往往会受到各种噪声的干扰,这些噪声不仅降低了弱光图像质量,还增加了弱光图像细节增强的难度。为此,提出了基于多尺度加权引导滤波的细节增强方法。对于弱光图像进行混合灰度变换以及多尺度加权引导滤波,实... 图像传感器在捕捉弱光图像时往往会受到各种噪声的干扰,这些噪声不仅降低了弱光图像质量,还增加了弱光图像细节增强的难度。为此,提出了基于多尺度加权引导滤波的细节增强方法。对于弱光图像进行混合灰度变换以及多尺度加权引导滤波,实现图像噪声去除。在弱光图像噪声去除的基础上,根据弱光图像的亮度分量、平均照射分量、反射分量进行全局非线性亮度校正,实现弱光图像细节增强。实验结果表明,所提方法对弱光图像的引导滤波效果较好,增强后的图像分辨率较高,色彩失真和灰度不均现象不显著,实际应用价值较高。 展开更多
关键词 多尺度加权引导滤波 弱光图像细节增强 像素点均值过滤 反射分量 全局线性亮度校正
在线阅读 下载PDF
基于多尺度自注意力增强的多方对话角色识别方法 被引量:2
9
作者 张禹尧 蒋玉茹 张仰森 《中文信息学报》 CSCD 北大核心 2021年第5期101-109,共9页
角色识别任务是近年来提出的一项自然语言处理任务,面向多方参与的对话场景,目标是将对话中的人物提及映射到具体的人物实体。目前在该任务的最优系统中,只使用了较为简单的编码器,并未针对对话文本特点进行改造创新。该文在最优系统的... 角色识别任务是近年来提出的一项自然语言处理任务,面向多方参与的对话场景,目标是将对话中的人物提及映射到具体的人物实体。目前在该任务的最优系统中,只使用了较为简单的编码器,并未针对对话文本特点进行改造创新。该文在最优系统的基础上,提出了一种基于多尺度自注意力增强的方法,借助不同尺度的自注意力,来获得更好的信息表示。首先,通过尺度较大的全局注意力,对场景内的全部对话信息进行处理,保留了全局的对话信息;然后,通过尺度较小的局部注意力,对局部范围内的对话进行计算,捕获近距离的信息之间的关联关系;最后,将不同尺度得到的信息进行融合,达到对编码信息增强的效果。在SemEval2018 Task4任务上的实验结果表明了该方法的有效性,相较于目前最优系统,在全部实体的F1值上提高了18.94%。 展开更多
关键词 角色识别 多尺度注意力 全局注意力 局部注意力
在线阅读 下载PDF
顾及多尺度特征及全局上下文的建筑提取方法 被引量:1
10
作者 廖子阳 冯德俊 +1 位作者 陈虹宇 刘子琛 《遥感信息》 CSCD 北大核心 2024年第2期118-126,共9页
针对语义分割提取建筑物时,在特征提取过程中丢失局部细节信息,对全局上下文信息的感知能力及多尺度特征的提取不足,导致小建筑物漏提、建筑物提取不完整及内部孔洞的问题,提出了顾及多尺度特征及全局上文信息的建筑物提取方法。该方法... 针对语义分割提取建筑物时,在特征提取过程中丢失局部细节信息,对全局上下文信息的感知能力及多尺度特征的提取不足,导致小建筑物漏提、建筑物提取不完整及内部孔洞的问题,提出了顾及多尺度特征及全局上文信息的建筑物提取方法。该方法采用编码-解码结构,利用并行的连续空洞卷积提取多尺度特征,并行使用压缩激励模块(SE)和条带池化模块(SPM)从通道和空间维度捕获全局上下文信息,提高网络对小建筑物的识别能力及提取结果的完整性,并减少内部孔洞。通过在WHU建筑数据集和Inria航空数据集上与常见的语义分割网络进行的对比实验表明,该方法在提高建筑物提取准确率的同时,较好地解决了小建筑物漏提、建筑物提取不完整及内部孔洞等问题。 展开更多
关键词 语义分割 多尺度特征 全局上下文 空洞卷积 注意力机制 建筑物
在线阅读 下载PDF
结合注意力的纺织品瑕疵检测方法研究
11
作者 周在雍 狄岚 《智能系统学报》 CSCD 北大核心 2024年第4期827-838,共12页
本文阐述了一种名为SAAM-YOLOX的基于改进YOLOX的纺织品瑕疵检测模型,旨在解决纺织品瑕疵检测中针对犬牙花纹与格纹背景中出现的误检和漏检问题,以及整体检测精度不高的问题。在特征提取阶段,该模型引入了离散余弦变换所构建的多分支离... 本文阐述了一种名为SAAM-YOLOX的基于改进YOLOX的纺织品瑕疵检测模型,旨在解决纺织品瑕疵检测中针对犬牙花纹与格纹背景中出现的误检和漏检问题,以及整体检测精度不高的问题。在特征提取阶段,该模型引入了离散余弦变换所构建的多分支离散余弦注意力机制(multi-branch discrete cosine attention,MDCA),能够解决模型在犬牙花纹与格纹背景中出现的误检和漏检问题,并且在检测精度上有一定的提高;在特征融合阶段,为了聚集和加强不同尺度的语义特征,SAAM-YOLOX模型采用了尺度聚合技术和注意力机制来构建尺度聚合注意力模块(scale aggregation attention module,SAAM)。在SAAM的上采样过程中,使用双线性插值结合自注意力机制来增强特征信息的有效性,从而进一步提高检测的精度。在完成尺度聚合后,加入注意力模块来增强混合尺度的特征表示,最终实现提高检测效果的目的。实验结果表明,本文检测模型解决了犬牙花纹与格纹背景中出现的误检和漏检问题,并且提高了瑕疵检测的精度。 展开更多
关键词 注意力机制 尺度聚合 线性插值 离散余弦变换 多尺度特征 特征融合 纺织品瑕疵检测 计算机视觉
在线阅读 下载PDF
基于全局上下文注意力的点云语义分割 被引量:1
12
作者 侯伟鹏 王蕾 《现代电子技术》 2023年第9期120-125,共6页
点云语义分割是三维环境感知的基础,直接基于点的语义分割方法避免了因点云结构化处理所造成的信息损失,但大多数深度学习模型的研究主要集中在提取局部几何特征,没有考虑点云不同局部结构之间的上下文关系,并且忽略了低级与高级特征之... 点云语义分割是三维环境感知的基础,直接基于点的语义分割方法避免了因点云结构化处理所造成的信息损失,但大多数深度学习模型的研究主要集中在提取局部几何特征,没有考虑点云不同局部结构之间的上下文关系,并且忽略了低级与高级特征之间的语义差距,限制了特征表示的能力,影响了点云语义分割的精度。因此,文中提出一种基于全局上下文注意力的点云语义分割方法,该方法主要由基于外部注意力的全局上下文特征聚合和基于后向竞争性注意力的邻近尺度特征融合两部分组成。通过外部注意力学习不同局部结构之间的长距离依赖关系,从而获得丰富的全局上下文信息。为了进一步增强模型的上下文感知能力,设计基于后向竞争性注意力的邻近尺度特征融合模块,学习低级与高级语义特征之间的相似度,重新为中间特征通道分配权重。在S3DIS大规模室内点云数据集上对所提方法进行评估,结果表明,所提方法的平均交并比在Area5上达到了65.2%,相比于RandLA-Net提高了2.5%,在6折交叉验证上的平均交并比达到了71.4%,相比于RandLA-Net提高了1.4%。证明了所提方法能够有效提取全局上下文特征,提高了语义分割的精度。 展开更多
关键词 点云语义分割 全局上下文特征 邻近尺度 外部注意力 后向竞争性注意力 平均交并比
在线阅读 下载PDF
基于注意力机制与多尺度池化的实时语义分割网络 被引量:5
13
作者 王卓 瞿绍军 《计算机工程》 CAS CSCD 北大核心 2023年第10期222-229,238,共9页
现有语义分割算法在精确度方面表现良好,但在速度上难以满足实时性要求。为提升网络分割速度同时确保高精确度,提出一种新型实时语义分割网络。设计融合通道注意力模块,先通过最大池化和平均池化捕捉全局特征,对池化后的特征图进行级联... 现有语义分割算法在精确度方面表现良好,但在速度上难以满足实时性要求。为提升网络分割速度同时确保高精确度,提出一种新型实时语义分割网络。设计融合通道注意力模块,先通过最大池化和平均池化捕捉全局特征,对池化后的特征图进行级联、卷积和变形以得到各通道权重,再将原特征图与各通道权重进行矩阵乘法操作,得到融合通道权重。将融合通道权重与原特征图进行元素级乘法操作,保证各通道权重与原特征图有效融合。提出一种轻量化金字塔场景解析模块,使用多尺度池化操作充分捕捉多尺度目标特征,在原金字塔场景解析模块的基础上减少池化后的特征图通道数,从而降低计算量。池化后特征图以级联方式连接,利用输入特征图引导连接后的特征图,以有效融合高层和低层特征图。在公共图像数据集Cityscapes上进行实验,结果表明,该网络在验证集、测试集上的准确率分别达到74.6%、73.8%,分割速度达到60.6帧/s,分割性能优于ICNet、DFANet-A等网络。 展开更多
关键词 语义分割 全局特征 注意力机制 金字塔场景解析 多尺度池化
在线阅读 下载PDF
融合密集编码器与双路径注意力的皮肤病变分割方法
14
作者 王龙业 肖越 +2 位作者 曾晓莉 张凯信 马傲 《计算机科学与探索》 CSCD 北大核心 2024年第4期978-989,共12页
针对皮肤镜图像病变区域存在形状大小各异、边界不连续且模糊、病灶区域与背景相似度高的问题,提出了一种融合密集编码器与双路径注意力的皮肤病变分割网络(DEDA-Net)。首先,运用密集编码模块进行多尺度信息融合增强网络特征提取能力,... 针对皮肤镜图像病变区域存在形状大小各异、边界不连续且模糊、病灶区域与背景相似度高的问题,提出了一种融合密集编码器与双路径注意力的皮肤病变分割网络(DEDA-Net)。首先,运用密集编码模块进行多尺度信息融合增强网络特征提取能力,缓解皮肤镜图像中边缘模糊的问题,并采用跳跃连接与残差路径减少网络编解码之间的语义鸿沟;其次,根据特征图内每个特征点关联性程度大小进行加权提出了全局正态池化层,设计了在空间与通道两个维度提取特征信息的双路径注意力模块,避免因全局信息获取不足导致难以区分病灶区域与背景的问题;最后,利用辅助损失函数思想,在网络中间与最后的输出层两侧使用加权损失函数来提升网络泛化能力。实验结果表明,该算法在ISIC2017数据集上分割精度为96.45%,特异性为97.82%,Dice系数为93.16%,IoU为86.61%,比基线U-Net分别提高了5.93个百分点、6.45个百分点、6.53个百分点和5.63个百分点,能够有效分割皮肤病变区域。 展开更多
关键词 皮肤病分割 多尺度融合 密集编码 注意力机制 全局正态池化
在线阅读 下载PDF
基于Transformer的全局-局部融合特征的遮挡行人重识别方法
15
作者 汪旭 胡晓光 +1 位作者 付哲宇 赵利欣 《计算机科学与探索》 北大核心 2025年第7期1832-1850,共19页
行人重识别(ReID)是利用人工智能解决车站安检、城市监控系统等公共安全应用问题的技术,具有从跨设备采集的图像中识别某一特定行人的能力。但是在行人重识别等问题中,往往会出现行人被刻意遮挡或被复杂场景环境遮挡等因素,这大大增加... 行人重识别(ReID)是利用人工智能解决车站安检、城市监控系统等公共安全应用问题的技术,具有从跨设备采集的图像中识别某一特定行人的能力。但是在行人重识别等问题中,往往会出现行人被刻意遮挡或被复杂场景环境遮挡等因素,这大大增加了行人重识别的难度。在目前所提出的大部分遮挡行人重识别方法中,卷积神经网络模型更加关注局部特征,但难以获得全局结构信息,Transformer网络模型建模长距离的特征依赖,但易忽略局部特征细节。为解决这些难题,提出了一种全局-局部融合特征的遮挡行人重识别方法,利用CNN和Transformer特征学习网络的特点,在丰富行人局部特征的同时提升特征的全局表达能力。该模型由三个部分组成:CNN网络主要提取局部细节特征,Transformer分支侧重提取全局特征信息,并通过跨维度多尺度池化融合模块计算上述两个分支特征的相关性,进而实现全局-局部的特征融合;由多层级注意力引导生成的掩码模块能够精准地突出行人图像中的关键特征,自动对齐行人特征信息,抑制遮挡部分或背景噪声的干扰;图像高低频特征增强模块强化被遮挡行人的高低频特征信息,突出有效信息。消融实验以及在相关数据集上的实验结果证明了所提方法的有效性。 展开更多
关键词 全局 局部 跨维度多尺度池化融合 多层级注意力 高低频特征
在线阅读 下载PDF
融合多特征与全局-局部Transformer的图像修复算法
16
作者 滕诗宇 何丽君 《电子测量技术》 北大核心 2025年第6期121-129,共9页
针对当前图像修复领域所面临的高计算复杂度以及在生成结构合理且细节丰富的图像方面的局限,提出了一种融合多尺度分层特征与全局-局部协同Transformer的图像修复模型。首先提出多尺度分层特征融合模块,以实现深层特征与浅层特征细节上... 针对当前图像修复领域所面临的高计算复杂度以及在生成结构合理且细节丰富的图像方面的局限,提出了一种融合多尺度分层特征与全局-局部协同Transformer的图像修复模型。首先提出多尺度分层特征融合模块,以实现深层特征与浅层特征细节上的有效融合,在扩大感受野的同时减少关键信息丢失情况。其次提出用于全局推理的全局-局部协同Transformer模块,它通过集成矩形窗口注意力机制和局部前馈神经网络,在降低计算复杂度的同时,提高模型对全局上下文信息的宏观理解和对局部细节特征的微观捕捉能力,增强图像的整体一致性。实验在CelebA-HQ和Places2数据集上进行了验证,在处理40%~50%掩码时,所提方法与常用的修复方法对比,PSNR平均提高了0.26~6.25 dB,SSIM平均提升了1.4%~19%,L1平均下降了0.2%~5.66%。实验证明,所提方法修复后的图像在视觉上具有更加真实和自然的效果,进一步验证了该方法的有效性。 展开更多
关键词 深度学习 图像修复 多尺度分层特征融合 全局-局部协同Transformer 矩形窗口注意力机制 局部前馈神经网络
在线阅读 下载PDF
非线性优化的广义投影变尺度算法及超线性收敛性 被引量:1
17
作者 房明磊 朱志斌 +1 位作者 张聪 陈凤华 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2011年第3期373-380,共8页
结合罚函数法的思想,提出一种初始点任意的广义投影变尺度算法求解非线性等式和不等式约束优化问题,克服了Maratos效应的校正方向自动产生显式表达式,并在适当的条件下证明了算法是全局收敛的,且具有超线性收敛性.实验结果表明算法有效.
关键词 约束优化 广义投影变尺度 全局收敛性 线性收敛性
在线阅读 下载PDF
全局信息提取与重建的遥感图像语义分割网络
18
作者 梁龙学 贺成龙 +1 位作者 吴小所 闫浩文 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2024年第11期2270-2279,2319,共11页
为了将遥感场景图像更好地进行分割,供给下游任务使用,提出多尺度注意力提取与全局信息重建网络.编码器引入多尺度卷积注意力骨干到遥感深度学习语义分割模型中.多尺度卷积注意力能够捕获多尺度信息,给解码器提供更丰富的全局深浅层信息... 为了将遥感场景图像更好地进行分割,供给下游任务使用,提出多尺度注意力提取与全局信息重建网络.编码器引入多尺度卷积注意力骨干到遥感深度学习语义分割模型中.多尺度卷积注意力能够捕获多尺度信息,给解码器提供更丰富的全局深浅层信息.在解码器,设计了全局多分支局部Transformer块.多尺度逐通道条带卷积重建多尺度空间上下文信息,弥补全局分支存在的空间信息割裂,与全局语义上下文信息共同重建全局信息分割图.解码器末端设计极化特征精炼头.通道上利用softmax和sigmoid组合,构建概率分布函数,拟合更好的输出分布,修复浅层中潜在的高分辨率信息损失,指导和融合深层信息,获得精细的空间纹理.实验结果表明,网络实现了很高的精确度,在ISPRS Vaihingen数据集上达到82.9%的平均交并比,在ISPRS Potsdam数据集上达到87.1%的平均交并比. 展开更多
关键词 语义分割 TRANSFORMER 多尺度卷积注意力 全局多分支局部注意力 全局信息重建
在线阅读 下载PDF
基于交叉注意力Transformer的人体姿态估计方法 被引量:1
19
作者 王款 宣士斌 +2 位作者 何雪东 李紫薇 李嘉祥 《计算机工程》 CAS CSCD 北大核心 2023年第7期223-231,共9页
现有用于人体姿态估计的深度卷积网络方法大多采用堆叠Transformer编码器技术,未充分考虑低分辨率全局语义信息,存在模型学习困难、推理成本高等问题。提出基于交叉注意力的Transformer多尺度表征学习方法。利用深度卷积网络获取不同分... 现有用于人体姿态估计的深度卷积网络方法大多采用堆叠Transformer编码器技术,未充分考虑低分辨率全局语义信息,存在模型学习困难、推理成本高等问题。提出基于交叉注意力的Transformer多尺度表征学习方法。利用深度卷积网络获取不同分辨率特征图,将特征图转变为多尺度视觉标记,并且预估关键点在标记空间中的分布提高模型的收敛速度。为增强低分辨率全局语义的可识别性,提出多尺度交叉注意力模块,该模块通过对不同分辨率特征标记之间的多次交互,以及对关键点标记采取移动关键点策略,实现减少关键点标记冗余和交叉融合操作次数,交叉注意力融合模块从特征标记中抽取的不同尺度特征信息形成关键点标记,有助于降低上采样融合的不准确性。在多项基准数据集上的实验结果表明,与当前最先进的TokenPose方法相比,该方法能有效促进Transformer编码器对关键点之间关联关系的学习,在不降低性能的前提下计算代价下降11.8%。 展开更多
关键词 全局语义 多尺度交叉注意力 人体姿态估计 表征学习 交叉注意力融合 Transformer编码器
在线阅读 下载PDF
基于多尺度上下文的英文作文自动评分研究 被引量:3
20
作者 于明诚 党亚固 +2 位作者 吴奇林 吉旭 毕可鑫 《计算机工程》 CAS CSCD 北大核心 2024年第3期259-266,共8页
目前作文自动评分模型缺乏对不同尺度上下文语义特征的提取,未能从句子级别计算与作文主题关联程度的特征。提出基于多尺度上下文的英文作文自动评分研究方法MSC。采用XLNet英文预训练模型提取原始作文文本单词嵌入和句嵌入,避免在处理... 目前作文自动评分模型缺乏对不同尺度上下文语义特征的提取,未能从句子级别计算与作文主题关联程度的特征。提出基于多尺度上下文的英文作文自动评分研究方法MSC。采用XLNet英文预训练模型提取原始作文文本单词嵌入和句嵌入,避免在处理长序列文本时无法准确捕捉到符合上下文语境的向量嵌入,提升动态向量语义表征质量,解决一词多义问题,并通过一维卷积模块提取不同尺度的短语级别嵌入。多尺度上下文网络通过结合内置自注意力简单循环单元和全局注意力机制,分别捕捉单词、短语和句子级别的作文高维潜在上下文语义关联关系,利用句向量与作文主题计算语义相似度提取篇章主题层次特征,将所有特征输入融合层通过线性层得到自动评分结果。在公开的标准英文作文评分数据集ASAP上的实验结果表明,MSC模型平均二次加权的Kappa值达到了80.5%,且在多个子集上取得了最佳效果,优于实验对比的深度学习自动评分模型,证明了MSC在英文作文自动评分任务上的有效性。 展开更多
关键词 英文作文自动评分 预训练模型 多尺度上下文 全局注意力 主题层次特征
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部