期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多尺度级联网络的水下图像增强方法 被引量:6
1
作者 米泽田 晋洁 +3 位作者 李圆圆 丁雪妍 梁政 付先平 《电子与信息学报》 EI CSCD 北大核心 2022年第10期3353-3362,共10页
针对水下图像由于光吸收、后向散射等因素导致的严重色偏、细节丢失等问题,该文提出一种基于多尺度级联网络的水下图像增强方法。针对单一网络特征利用不全面导致的图像梯度消失问题,该方法通过级联多尺度原始图像与相应的特征图像,以... 针对水下图像由于光吸收、后向散射等因素导致的严重色偏、细节丢失等问题,该文提出一种基于多尺度级联网络的水下图像增强方法。针对单一网络特征利用不全面导致的图像梯度消失问题,该方法通过级联多尺度原始图像与相应的特征图像,以获得更优异的细节保持效果,并实现从较浅层到较深层快速预测残差的能力。此外,引入联合密集网络块和递归块,通过特征重用有效解决多尺度网络参数过多的问题。为有效解决单一损失造成的图像细节恢复不均的问题,提出Charbonnier和结构相似度(SSIM)联合损失函数。经仿真实验分析,所提网络在处理水下图像严重色偏、细节丢失等方面都取得了显著的效果。 展开更多
关键词 水下图像增强 多尺度级联网络 多尺度特征提取 梯度消失
在线阅读 下载PDF
基于多尺度增强级联残差网络的DAS地震资料背景噪声衰减方法 被引量:1
2
作者 钟铁 王玮钰 +3 位作者 王伟 董士琦 卢绍平 董新桐 《石油地球物理勘探》 EI CSCD 北大核心 2023年第6期1332-1342,共11页
由于复杂强背景噪声的影响,分布式光纤声学传感(Distributed Optical Fiber Acoustic Sensing,DAS)采集的地震记录普遍信噪比较低。如何有效抑制背景噪声,恢复弱上行反射信息,切实提升DAS记录信噪比,已成为资料处理领域的热点问题之一... 由于复杂强背景噪声的影响,分布式光纤声学传感(Distributed Optical Fiber Acoustic Sensing,DAS)采集的地震记录普遍信噪比较低。如何有效抑制背景噪声,恢复弱上行反射信息,切实提升DAS记录信噪比,已成为资料处理领域的热点问题之一。针对复杂DAS背景噪声消减问题,提出了一种多尺度增强级联残差网络(Multiscale Enhanced Cascade Residual Network,MECRN)。MECRN具有双路径级联残差网络结构,通过双路径机制提取DAS记录浅层信息。在此基础上,引入空洞卷积和多尺度模块提取DAS记录的多尺度特征,并通过跳跃连接导入浅层特征,在避免有效特征损失的同时,提升网络的特征提取能力。最后,通过残差学习整合局部和全局特征,并对重建特征细化,进一步提升了MECRN的去噪能力。模拟和实际DAS资料处理结果均表明,MECRN可以有效地压制DAS记录中的复杂背景噪声,准确恢复弱反射信号,显著提升处理DAS资料的能力。 展开更多
关键词 分布式光纤声学传感(DAS) 复杂背景噪声 多尺度增强级联残差网络 低信噪比 噪声衰减
在线阅读 下载PDF
改进YOLOv8n的林业害虫检测方法 被引量:1
3
作者 陈万志 袁航 《北京林业大学学报》 北大核心 2025年第2期119-131,共13页
【目的】针对现有林业害虫检测方法检测速度慢,检测类别少,小目标害虫检测效果差等问题,提出了一种改进YOLOv8n的林业害虫检测方法。【方法】首先,采用高效多尺度级联注意力特征提取网络EfficientViT作为改进模型的主干网络,降低计算复... 【目的】针对现有林业害虫检测方法检测速度慢,检测类别少,小目标害虫检测效果差等问题,提出了一种改进YOLOv8n的林业害虫检测方法。【方法】首先,采用高效多尺度级联注意力特征提取网络EfficientViT作为改进模型的主干网络,降低计算复杂度,提高检测速度;其次,通过构建多尺度自适应特征融合模块DA-C2F提升模型在复杂背景下害虫目标的聚焦能力和识别精度,此外新增的小目标检测头XSH能够进一步提升小目标害虫的检测能力;最后,采用基于最小点距离交并比损失函数MPDIoU作为模型的边界框损失,提升网络收敛速度,进一步增强害虫目标的定位准确率。【结果】改进模型的检测精确率、召回率、平均精度、平均精度均值(mAP50-95)和F_(1)分数分别达到98.6%、95.7%、98.3%、85.6%和0.979,前4者较原模型分别提升了3.9、2.6、2.8、2.5个百分点,F_(1)分数提升了4.4%;检测速度(帧率)达到了95帧/秒,提升了15.9%,优于更轻量级的模型。此外,对比其他检测模型,改进模型对飞蛾类害虫的检测精确率提升了11.2个百分点,并且两种独立飞蛾害虫综合检测的表现也更为优异。【结论】本研究提出的方法对于林业害虫的检测准确度更高,检测速度更快,且对多类别害虫的检测精度更高,改进模型的泛化能力更强。 展开更多
关键词 深度学习 卷积神经网络(CNN) 林业害虫检测 YOLOv8n 多尺度级联注意力特征提取网络 多尺度自适应特征融合 小目标检测头
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部