期刊文献+
共找到8,856篇文章
< 1 2 250 >
每页显示 20 50 100
基于GAN和多尺度空间注意力的多模态医学图像融合 被引量:3
1
作者 林予松 李孟娅 +1 位作者 李英豪 赵哲 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期1-8,共8页
针对多模态医学图像融合过程中多尺度特征和纹理细节信息丢失的问题,提出一种基于生成对抗网络和多尺度空间注意力的图像融合算法。首先,生成器采用自编码器结构,分别利用编码器和解码器对输入图像进行特征提取、融合和重建,生成融合图... 针对多模态医学图像融合过程中多尺度特征和纹理细节信息丢失的问题,提出一种基于生成对抗网络和多尺度空间注意力的图像融合算法。首先,生成器采用自编码器结构,分别利用编码器和解码器对输入图像进行特征提取、融合和重建,生成融合图像;其次,整个对抗网络框架采用双鉴别器结构,使得生成器生成的融合图像同时保留多个模态图像的显著特征;最后,构建一种多尺度空间注意力作为编码器进行特征提取的基本模块,利用多尺度结构充分捕获并保留源图像的多尺度特征,并且引入空间注意力更好地保留源图像的结构和细节信息。全脑图谱数据库上的实验结果表明:所提算法生成的融合图像不仅纹理细节更为丰富,有助于人类视觉观察,而且在3种不同类型的医学图像融合任务上平均梯度、峰值信噪比、互信息、视觉信息保真度等客观评价指标的平均值分别达到0.3023、20.7207、1.4414、0.6498,与其他先进的算法相比具有一定的优势。 展开更多
关键词 图像融合 多模态医学图像 生成对抗网络 特征金字塔 注意力机制
在线阅读 下载PDF
基于多尺度空间注意力互补的红外与可见光图像融合
2
作者 张永兴 连博文 +2 位作者 顾乃庭 李方召 李杨 《光学精密工程》 北大核心 2025年第7期1152-1168,共17页
针对当前红外与可见光图像融合方法过度引入红外冗余信息导致复杂场景下无法平衡复杂场景信息,融合效果不佳的现状,提出基于多尺度空间注意力互补的红外和可见光图像融合方法,采用双分支卷积网络分别提取红外和可见光图像特征信息并进... 针对当前红外与可见光图像融合方法过度引入红外冗余信息导致复杂场景下无法平衡复杂场景信息,融合效果不佳的现状,提出基于多尺度空间注意力互补的红外和可见光图像融合方法,采用双分支卷积网络分别提取红外和可见光图像特征信息并进行差异互补,利用多尺度空间注意力互补处理后回归叠加至图像特征中,实现互补特征中途回归叠加的图像融合,有效平衡复杂场景信息。实验结果表明:相比于Densefuse,PIAFusion等主流融合方法,该方法在通用性较强的互信息(MI)方面分别提升了4.1%和4.3%,在视觉信息保真度(VIF)方面分别提升了5.0%和2.3%,有效保留了复杂场景下的目标特征信息并实现对冗余特征的有效抑制,具有良好的特征平衡能力,在复杂场景下目标检测和识别中具有潜在应用价值。 展开更多
关键词 图像融合 红外和可见光图像 双分支卷积网络 差异互补 多尺度空间注意力 回归叠加
在线阅读 下载PDF
基于多尺度空间注意力引导的图像超分辨率重建网络
3
作者 程德强 王培杰 +2 位作者 董彦强 寇旗旗 江鹤 《北京航空航天大学学报》 北大核心 2025年第7期2185-2195,共11页
针对基于注意力机制的图像超分辨率重建网络忽视了注意力特征的差异性,仅将注意力机制直接引入到网络模型中,对不同层次特征进行相同处理的问题,设计了一种多尺度空间注意力引导的图像超分辨率重建网络SAGN。提出了增强特征提取残差块(E... 针对基于注意力机制的图像超分辨率重建网络忽视了注意力特征的差异性,仅将注意力机制直接引入到网络模型中,对不同层次特征进行相同处理的问题,设计了一种多尺度空间注意力引导的图像超分辨率重建网络SAGN。提出了增强特征提取残差块(ERB),完善了局部信息的表征能力;集成了多尺度空间注意力(MSA)模块,获取了MSA特征信息;引入了注意力引导模块(AGM),对不同的特征分配个性化的权重,以实现有效的上下文全局特征融合和冗余信息抑制。实验结果表明:量化测试和主观效果上,相比于传统的注意力结构,SAGN在4个基准数据集上都展现出了优越性,其4倍重建结果的峰值信噪比(PSNR)较次优模型平均提高了0.05 dB,进一步证实了SAGN在恢复图像的几何结构和细节方面的优势。 展开更多
关键词 超分辨率重建 卷积神经网络 注意力机制 多尺度空间注意力 注意力引导
在线阅读 下载PDF
基于多尺度卷积神经网络和双注意力机制的V2G充电桩开关管开路故障信息融合诊断
4
作者 徐玉珍 邹中华 +3 位作者 刘宇龙 曾梓洋 文云 金涛 《中国电机工程学报》 北大核心 2025年第8期2992-3002,I0012,共12页
随着电动汽车的普及,充电基础设施需求急剧上升,迫切需要对充电桩进行维护和故障诊断。为有效利用不同尺度下的充电桩故障信号特征,该文提出一种基于多尺度卷积神经网络和双注意力机制的V2G(vehicle-to-grid)充电桩开关管开路故障信息... 随着电动汽车的普及,充电基础设施需求急剧上升,迫切需要对充电桩进行维护和故障诊断。为有效利用不同尺度下的充电桩故障信号特征,该文提出一种基于多尺度卷积神经网络和双注意力机制的V2G(vehicle-to-grid)充电桩开关管开路故障信息融合诊断方法。该方法基于卷积神经网络,引入自注意力机制突出故障信号中的重要特征。同时,使用最大池化层和平均池化层处理故障信号,提供不同尺度的互补信息;此外,引入通道注意力机制关注不同通道特征,可提高模型性能;最后,采用Softmax分类器进行分类和识别。仿真结果表明,该方法在多个方面优于其他对比算法,包括收敛速度、抑制过拟合以及诊断准确率等,并且表现出卓越的抗噪性能,能够有效应对充电桩故障信号中的噪声。在实际测试中,该方法实现了开关管开路故障位置的准确定位,其准确率达96.67%。结果为充电桩开关管开路故障的诊断提供了可行的解决方案。 展开更多
关键词 充电桩 故障诊断 信息融合 深度学习 注意力机制
在线阅读 下载PDF
基于格点网格与段尺度注意力机制的知识图谱构建
5
作者 王体春 李昊 王贤伟 《计算机集成制造系统》 北大核心 2025年第4期1368-1382,共15页
为解决当前知识图谱构建模型过程中训练样本特征单一、关系抽取准确率低下的问题,建立一种基于格点网格与段尺度注意力机制的知识图谱自动构建模型(KG-GSAM)。针对实体识别任务,引入格点网格结构对双向门控循环神经网络进行改进;针对关... 为解决当前知识图谱构建模型过程中训练样本特征单一、关系抽取准确率低下的问题,建立一种基于格点网格与段尺度注意力机制的知识图谱自动构建模型(KG-GSAM)。针对实体识别任务,引入格点网格结构对双向门控循环神经网络进行改进;针对关系抽取任务,引入段尺度注意力机制,搭建关系抽取神经网络。在公开数据集和近三年自动导引车领域的专利文本构建的数据集上分别进行实验,结果表明所建立模型在Precision、Recall和F1-score三个指标上与其他知识图谱构建模型相比有一定的优越性。 展开更多
关键词 知识图谱 格点网格 尺度注意力机制 BERT模型 关系抽取神经网络 自动导引车
在线阅读 下载PDF
MDA-MIM:一种融合多尺度特征与双重注意力机制的雷达回波图预测模型
6
作者 胡强 高雅婷 +1 位作者 尹宾礼 渠连恩 《通信学报》 北大核心 2025年第3期248-257,共10页
为提升雷达回波图中时空特征的提取质量,提出了一种基于多尺度特征融合和双重注意力机制的MIM改进(MDA-MIM)模型。该模型基于空洞卷积实现多尺度特征提取与融合。通过在MIM模型中的非平稳模块集成自注意力机制,调整不同时间步长和空间... 为提升雷达回波图中时空特征的提取质量,提出了一种基于多尺度特征融合和双重注意力机制的MIM改进(MDA-MIM)模型。该模型基于空洞卷积实现多尺度特征提取与融合。通过在MIM模型中的非平稳模块集成自注意力机制,调整不同时间步长和空间位置的权重,更精确地捕捉雷达回波数据中的非平稳性特征。在平稳模块引入局部注意力机制,以聚焦于局部区域内的特征关联,增强对平稳性特征的捕捉能力。真实数据集上的实验结果表明,MDA-MIM具有优秀的预测性能,在MSE、MAE、SSIM和PSNR等指标上均优于对比模型。 展开更多
关键词 雷达回波图 时空预测 注意力机制 尺度特征
在线阅读 下载PDF
融合注意力机制和多尺度特征的图像水印方法
7
作者 张天骐 谭霜 +1 位作者 沈夕文 唐娟 《计算机应用》 北大核心 2025年第2期616-623,共8页
针对基于深度学习的水印方法未充分突显图像的关键特征,以及未有效利用中间卷积层输出特征的问题,为提升含水印图像的视觉质量和抵抗噪声攻击的能力,提出一种融合注意力机制和多尺度特征的图像水印方法。在编码器部分,设计注意力模块关... 针对基于深度学习的水印方法未充分突显图像的关键特征,以及未有效利用中间卷积层输出特征的问题,为提升含水印图像的视觉质量和抵抗噪声攻击的能力,提出一种融合注意力机制和多尺度特征的图像水印方法。在编码器部分,设计注意力模块关注重要图像特征,以减小水印嵌入引起的图像失真;在解码器部分,设计多尺度特征提取模块,以捕获不同层次的图像细节。实验结果表明,在COCO数据集上与深度水印模型HiDDeN(Hiding Data with Deep Networks)相比,所提方法生成的含水印图像的峰值信噪比(PSNR)和结构相似度(SSIM)分别增加了11.63%和1.29%;所提方法针对dropout、cropout、crop、高斯模糊和JPEG压缩的水印提取平均误比特率(BER)降低了53.85%;此外,消融实验结果验证了添加注意力模块和多尺度特征提取模块的方法有更好的不可见性和鲁棒性。 展开更多
关键词 图像水印 注意力机制 特征提取 鲁棒水印 深度学习 对抗训练
在线阅读 下载PDF
基于注意力机制和多尺度融合的人群计数网络
8
作者 栾方军 龚琪 袁帅 《计算机工程》 北大核心 2025年第3期352-361,共10页
为了应对人群图像中尺度变化和背景干扰的问题,提出一种人群计数网络模型,旨在充分利用多尺度信息并降低背景噪声的影响。首先采用ConvNeXt作为主干网络,用于提取特征。其次为了有效融合不同层次的特征,提出多层次特征融合模块(MFFM),... 为了应对人群图像中尺度变化和背景干扰的问题,提出一种人群计数网络模型,旨在充分利用多尺度信息并降低背景噪声的影响。首先采用ConvNeXt作为主干网络,用于提取特征。其次为了有效融合不同层次的特征,提出多层次特征融合模块(MFFM),将主干网络中不同层次的特征进行跨尺度融合,融合后的特征包含了不同尺度的语义信息,可以更好地适应人群计数任务中的尺度变化问题。接着为了更好地解决人群计数中存在的挑战,设计一个多尺度注意力模块(MSAM),根据不同感受野的分支提取不同尺度的特征,利用选择性Kernel通道注意力(SKCA)缓解多列结构存在的特征相似问题,并将模块生成的注意力图反馈到对应的尺度特征中,以抑制背景的干扰。网络模型在ShanghaiTechA数据集中的平均绝对误差(MAE)和均方根误差(RMSE)分别达到了56.1和93.9;在ShanghaiTechB数据集中的MAE和RMSE分别达到了6.1和10.3;在UCF_CC_50数据集中的MAE和RMSE分别达到了174.9和252.7;在Mall数据集中的MAE和RMSE分别达到了1.42和1.85。在公开数据集上的实验结果表明,提出的网络模型与现有代表性的人群计数方法相比,在提升人群计数任务的准确性和鲁棒性方面均取得了明显进展。 展开更多
关键词 人群计数 尺度特征融合 注意力机制 神经网络 密度图
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测
9
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 尺度特征融合
在线阅读 下载PDF
基于双重注意力机制的多尺度指代目标分割方法
10
作者 胡梦楠 王蓉 +1 位作者 张文靖 张琪 《计算机辅助设计与图形学学报》 北大核心 2025年第1期148-156,共9页
针对指代分割任务中视觉和语言间缺乏充分的跨模态交互、不同尺寸的目标空间和语义信息存在差异的问题,提出了基于双重注意力机制的多尺度指代目标分割方法.首先,利用语言表达中不同类型的信息关键词来增强视觉和语言特征的跨模态对齐,... 针对指代分割任务中视觉和语言间缺乏充分的跨模态交互、不同尺寸的目标空间和语义信息存在差异的问题,提出了基于双重注意力机制的多尺度指代目标分割方法.首先,利用语言表达中不同类型的信息关键词来增强视觉和语言特征的跨模态对齐,并使用双重注意力机制捕捉多模态特征间的依赖性,实现模态间和模态内的交互;其次,利用语言特征作为引导,从其他层次的特征中聚合与目标相关的视觉信息,进一步增强特征表示;然后利用双向ConvLSTM以自下而上和自上而下的方式逐步整合低层次的空间细节和高层次的语义信息;最后,利用不同膨胀因子的空洞卷积融合多尺度信息,增加模型对不同尺度分割目标的感知能力.此外,在UNC,UNC+,GRef和ReferIt基准数据集上进行实验,实验结果表明,文中方法在UNC,UNC+,GRef和ReferIt上的oIoU指标分别提高了1.81个百分点、1.26个百分点、0.84个百分点和0.32个百分点,广泛的消融研究也验证了所提方法中各组成部分的有效性. 展开更多
关键词 指代目标分割 跨模态交互 特征增强 注意力机制 尺度融合
在线阅读 下载PDF
基于注意力机制和多尺度卷积神经网络的容器异常检测
11
作者 李为 袁泽坤 +1 位作者 吴克河 程瑞 《信息安全研究》 北大核心 2025年第1期35-42,共8页
容器因为其轻量、灵活和便于部署等优点被广泛使用,成为云计算不可或缺的技术,但也因为其共享内核、相对虚拟机更弱的资源隔离的特性受到安全性方面的担忧.基于注意力机制和卷积神经网络提出一种基于系统调用序列的容器内进程异常检测方... 容器因为其轻量、灵活和便于部署等优点被广泛使用,成为云计算不可或缺的技术,但也因为其共享内核、相对虚拟机更弱的资源隔离的特性受到安全性方面的担忧.基于注意力机制和卷积神经网络提出一种基于系统调用序列的容器内进程异常检测方法,使用容器进程运行产生的数据对进程行为进行异常分析判断.在公开数据集和模拟攻击场景下的实验结果表明,该方法能检测出容器内进程行为的异常,并且在精确率、准确率等指标上高于随机森林、LSTM等对比方法. 展开更多
关键词 系统调用 容器 异常检测 深度学习 注意力机制
在线阅读 下载PDF
基于多重注意力机制和空间变换网络的换衣行人重识别
12
作者 李鹏辉 王洪元 +1 位作者 张继 陈海琴 《南京大学学报(自然科学版)》 北大核心 2025年第2期202-213,共12页
换衣行人重识别(Cloth-Changing Person Re-Identification,CC Re-ID)技术旨在监控视频或图像中针对同一行人在长时间跨度中进行识别,现有方法主要利用多模态信息来建模体型以减轻服装的影响,但其泛化能力差且需大量额外工作,而且,仅利... 换衣行人重识别(Cloth-Changing Person Re-Identification,CC Re-ID)技术旨在监控视频或图像中针对同一行人在长时间跨度中进行识别,现有方法主要利用多模态信息来建模体型以减轻服装的影响,但其泛化能力差且需大量额外工作,而且,仅利用RGB图像的方法无法充分提取与服装无关的信息.针对以上问题,提出一种基于多重注意力机制和空间变换网络的换衣行人重识别方法,通过在主干网络中融入CBAM(Convolutional Block Attention Module)和STN(Spatial Transformer Network,STN)模块,分别提升网络对于不同通道和空间位置重要性的感知能力以及对于不同角度图像的适应能力.为了进一步提高网络对行人细粒度特征的提取能力,融入三重注意力机制来关注不同维度上的信息,引入一个自适应特征提取模块来学习特征中不同区域的重要性.此外,还采用服装分类损失和服装对抗损失等多种损失函数来引导模型学习与服装无关的信息.在四个换衣行人重识别数据集(LTCC,PRCC,VC-Clothes和DeepChange)上进行了大量实验,实验结果表明,提出的方法的Rank-1和mAP指标优于一些先进的换衣行人重识别方法. 展开更多
关键词 换衣行人重识别 基于服装的对抗性损失 三重注意力机制 空间变换网络 自适应特征提取
在线阅读 下载PDF
结合注意力机制和多尺度特征融合的三维手部姿态估计
13
作者 郭诗月 党建武 +1 位作者 王阳萍 雍玖 《计算机应用》 北大核心 2025年第4期1293-1299,共7页
针对因遮挡和自相似性导致的从单张RGB图像估计三维手部姿态不精确的问题,提出结合注意力机制和多尺度特征融合的三维手部姿态估计算法。首先,提出结合扩张卷积和CBAM(Convolutional Block Attention Module)注意力机制的感受强化模块(S... 针对因遮挡和自相似性导致的从单张RGB图像估计三维手部姿态不精确的问题,提出结合注意力机制和多尺度特征融合的三维手部姿态估计算法。首先,提出结合扩张卷积和CBAM(Convolutional Block Attention Module)注意力机制的感受强化模块(SEM),以替换沙漏网络(HGNet)中的基本块(Basicblock),在扩大感受野的同时增强对空间信息的敏感性,从而提高手部特征的提取能力;其次,设计一种结合SPCNet(Spatial Preserve and Contentaware Network)和Soft-Attention改进的多尺度信息融合模块SS-MIFM(SPCNet and Soft-attention-Multi-scale Information Fusion Module),在充分考虑空间内容感知机制的情况下,有效地聚合多级特征,并显著提高二维手部关键点检测的准确性;最后,利用2.5D姿态转换模块将二维姿态转换为三维姿态,从而避免二维关键点坐标直接回归计算三维姿态信息导致的空间丢失问题。实验结果表明,在InterHand2.6M数据集上,所提算法的双手关节点平均误差(MPJPE)、单手MPJPE和根节点平均误差(MRRPE)分别达到了12.32、9.96和29.57 mm;在RHD(Rendered Hand pose Dataset)上,与InterNet和QMGR-Net算法相比,所提算法的终点误差(EPE)分别降低了2.68和0.38 mm。以上结果说明了所提算法能够更准确地估计手部姿态,且在一些双手交互和遮挡的场景下有更高的鲁棒性。 展开更多
关键词 手部姿态估计 尺度特征融合 注意力机制 高分辨率网络 沙漏网络
在线阅读 下载PDF
基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断
14
作者 章力 邓艾东 +2 位作者 王敏 卞文彬 张宇剑 《动力工程学报》 北大核心 2025年第4期571-581,共11页
针对传统多尺度卷积神经网络模型存在的特征定位不精确、训练时间长、抗噪性能差等问题,提出了一种基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断模型。首先,将滚动轴承的一维振动信号转换为二维灰度图作为输入,丰富特... 针对传统多尺度卷积神经网络模型存在的特征定位不精确、训练时间长、抗噪性能差等问题,提出了一种基于通道注意力机制与多尺度减法轻量化网络的滚动轴承故障诊断模型。首先,将滚动轴承的一维振动信号转换为二维灰度图作为输入,丰富特征信息;同时,构建多尺度减法神经网络模型,关注层级差异;其次,引入轻量化模块,减少内存访问;然后,结合通道注意力机制,调整特征权重;最后,将故障样本输入到网络模型中,实现精确分类。利用风电机组传动系统模拟实验台采集的样本数据进行诊断任务。结果表明:该故障诊断模型能够有效克服传统多尺度卷积神经网络模型网络层数多、参数量大所带来的弊端,能够充分关注各层级之间的差异信息,减少冗余信息的提取,精确定位故障特征,缩短模型训练时间,在恒定工况、变工况和强噪声工况下都具有较高的诊断精度. 展开更多
关键词 滚动轴承 故障诊断 尺度减法神经网络 轻量化模块 通道注意力机制 变工况
在线阅读 下载PDF
基于多尺度注意力机制的RAW图像重建
15
作者 张科 刘昱 胡凯 《北京航空航天大学学报》 北大核心 2025年第1期257-264,共8页
针对传统图像信号处理(ISP)算法繁琐的问题,基于可取代ISP算法的PyNET网络模型,提出一种端到端的RAW图像重建方法Py-CBAM。通过引入高效的注意力机制,并利用该机制对原有网络的多层级多尺度结构进行重设计,实现不同尺度特征的自适应加权... 针对传统图像信号处理(ISP)算法繁琐的问题,基于可取代ISP算法的PyNET网络模型,提出一种端到端的RAW图像重建方法Py-CBAM。通过引入高效的注意力机制,并利用该机制对原有网络的多层级多尺度结构进行重设计,实现不同尺度特征的自适应加权,以较大程度提升图像重建的性能。实验结果表明,所提方法在公开的ZRR数据集上获得的峰值信噪比(PSNR)与PyNET方法相比提升了0.37 dB,结构相似度(SSIM)提升了0.0018。将ZRR数据集和新构建的NRR数据集联合对Py-CBAM重新训练后,PSNR和SSIM分别达到25.73 dB和0.9654。视觉效果上,所提方法解决了RAW图像重建时的噪声高与色彩失真、畸变等问题,增强模型在多场景不同光照环境条件下的重建能力;重建结果较为真实,视觉质量最优,在图像过曝和过暗区域视觉提升效果较为明显。 展开更多
关键词 图像信号处理 图像重建 增强网络 注意力机制 深度学习
在线阅读 下载PDF
多尺度融合与注意力机制的生丝条干与疵点提取算法
16
作者 胡涛涛 孙卫红 +1 位作者 梁曼 邵铁锋 《中国测试》 北大核心 2025年第5期148-154,161,共8页
动态采集生丝图像时生丝微小抖动会造成生丝图像模糊,为解决现有生丝图像分割算法对模糊生丝条干与边缘疵点分割效果不佳的问题,以U-Net作为主干特征提取网络,提出一种基于多尺度融合与注意力机制的生丝条干与疵点分割算法。首先,将生... 动态采集生丝图像时生丝微小抖动会造成生丝图像模糊,为解决现有生丝图像分割算法对模糊生丝条干与边缘疵点分割效果不佳的问题,以U-Net作为主干特征提取网络,提出一种基于多尺度融合与注意力机制的生丝条干与疵点分割算法。首先,将生丝原始特征图进行空间与通道上的双路注意力抓取,增强网络对丝干与疵点等有效特征的提取能力。其次,通过编码器浅层嵌入的边缘定位模块获取细粒度的生丝边缘细节信息,将其输入到解码器特征融合模块进行不同网络层级的多尺度特征融合。最后,引入Lovsz-Softmax损失函数进行数据均衡,生成分割概率图后得到分割图像。实验结果表明,与现有生丝分割算法相比,该算法对模糊生丝条干有明显的分割优势,且生丝边缘疵点的分割准确率、特异性、敏感度分别达到98.26%,99.54%,84.31%;相比于原始U-Net网络,各指标分别提升2.59%,1.35%,5.87%。 展开更多
关键词 生丝 模糊条干 边缘疵点 注意力机制 尺度融合 语义分割
在线阅读 下载PDF
基于注意力机制和多尺度集成学习的细粒度图像识别方法
17
作者 季晟宇 江志康 +1 位作者 马翔 杨绿溪 《数据采集与处理》 北大核心 2025年第2期384-400,共17页
细粒度图像识别是计算机视觉领域中一项重要的研究课题,其主要目标是分辨同属一大类下外观具有高度相似性的子类。以弱监督的细粒度图像识别为研究内容,针对现有研究中存在的图像细粒度特征利用不充分以及判别性区域难以挖掘的问题,提... 细粒度图像识别是计算机视觉领域中一项重要的研究课题,其主要目标是分辨同属一大类下外观具有高度相似性的子类。以弱监督的细粒度图像识别为研究内容,针对现有研究中存在的图像细粒度特征利用不充分以及判别性区域难以挖掘的问题,提出了基于注意力机制和多尺度集成学习策略的细粒度图像识别方法。该方法引入渐进式学习网络,利用集成学习的策略,基于深度神经网络3个层级的输出特征并行构建多尺度基分类器,并使用标签平滑的方法对分类器进行渐进式训练,从而大幅度提高低层特征的利用率;同时采用高效双通道注意力机制对特征施加通道权重,使得网络能够在通道层面自主筛选特征,从而提升高信息相关度通道的利用率。该方法还引入了自注意力区域建议网络,通过构建循环反馈机制促使模型逐步定位到更加具有判别性的区域,并在最后的分类模块中将完整图像与判别性区域的特征信息进行融合。实验结果表明,该方法在CUB⁃200⁃2011、FGVC Aircraft和Stanford Cars细粒度图像数据集上的识别准确率达到行业先进水平。 展开更多
关键词 深度学习 细粒度图像识别 弱监督 注意力机制 集成学习
在线阅读 下载PDF
融合多尺度注意力机制的棉花枯萎病识别算法研究
18
作者 李文雪 孟洪兵 +1 位作者 孙丽丽 韩璐宇 《现代农业装备》 2025年第2期86-92,共7页
针对棉花枯萎病检测时叶片背景复杂、有遮挡以及病变多尺度等问题,提出一种融合多尺度注意力机制的YOLOv7棉花枯萎病识别算法。为适应棉花枯萎病病斑尺度不一、形状多变的特征,提升识别检测效果,在YOLOv7的特征提取网络中添加多尺度注... 针对棉花枯萎病检测时叶片背景复杂、有遮挡以及病变多尺度等问题,提出一种融合多尺度注意力机制的YOLOv7棉花枯萎病识别算法。为适应棉花枯萎病病斑尺度不一、形状多变的特征,提升识别检测效果,在YOLOv7的特征提取网络中添加多尺度注意力模块,通过多尺度信息的融合和自适应权重调整机制,提高模型的泛化性能;同时为了降低模型的计算量和参数量,提高模型的运行速度,更换特征提取网络为InceptionNeXt。试验结果表明,改进后的YOLOv7模型检测精度P达到95.9%,对比基线模型提升了2.3%;平均精度mAP@0.5达到88.15%,提高了3.67%;召回率R达到94.65%,提升了2.31%;参数量为33.73 M,减少了2.78 M;计算量为89.65 G,降低了14.62 G;证明该算法能有效提高棉花枯萎病的识别精度和效率,可对棉花病害防治提供一定的技术支撑。 展开更多
关键词 YOLOv7 棉花 注意力机制 枯萎病 病害检测
在线阅读 下载PDF
基于多尺度特征融合和注意力机制的视频异常检测方法
19
作者 吴祥 肖剑 吉根林 《应用科学学报》 北大核心 2025年第2期234-244,共11页
视频画面中的运动物体在不同时刻往往呈现出多样的尺度大小,这给视频异常检测带来了一定的挑战。尽管传统的生成对抗网络在视频异常检测任务上取得了一定成效,但因其采用单一尺度的特征提取方法,无法充分捕获不同尺度物体的特征,从而限... 视频画面中的运动物体在不同时刻往往呈现出多样的尺度大小,这给视频异常检测带来了一定的挑战。尽管传统的生成对抗网络在视频异常检测任务上取得了一定成效,但因其采用单一尺度的特征提取方法,无法充分捕获不同尺度物体的特征,从而限制了其异常检测的性能。针对该问题,本文基于生成对抗网络结构,提出了一种基于多尺度特征融合和注意力机制的视频异常检测方法。使用大小不同的卷积核捕获不同感受野的特征,并将它们进行融合以获得多尺度的特征表示。此外,在生成器的转置卷积层后引入坐标注意力机制,自适应分配特征图权重,从而增强模型对关键特征的感知能力。在公开数据集UCSD Ped2和Avenue上的实验结果表明,本文方法的性能优于其他同类方法。 展开更多
关键词 视频异常检测 深度学习 生成对抗网络 尺度特征融合 注意力机制
在线阅读 下载PDF
基于多尺度注意力机制的荧光图像分割 被引量:1
20
作者 汤珺 曹志兴 堵威 《激光杂志》 北大核心 2025年第1期142-151,共10页
针对荧光细胞图像分割中细胞轮廓重叠、形态多样等问题,本研究提出了一种结合自适应多尺度注意力机制与边界敏感损失函数的分割算法。首先,为了提升模型对多尺度细胞形态的适应能力,提出了自适应多尺度通道注意力机制,并与特征金字塔结... 针对荧光细胞图像分割中细胞轮廓重叠、形态多样等问题,本研究提出了一种结合自适应多尺度注意力机制与边界敏感损失函数的分割算法。首先,为了提升模型对多尺度细胞形态的适应能力,提出了自适应多尺度通道注意力机制,并与特征金字塔结合构建多尺度注意力金字塔结构,提高网络对复杂细胞形状特征的提取能力;其次,设计了一种边界敏感的交叉熵损失函数,通过对细胞边界区域的预测给予更高的权重,增强了网络对细胞边缘的识别精度。实验结果表明,所提方法在荧光细胞图像数据集上的平均Dice系数和平均IoU系数分别高于现有先进模型,证明了本研究方法在荧光图像分割任务中的有效性。 展开更多
关键词 荧光成像技术 深度学习 图像分割 残差神经网络 注意力机制
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部