期刊文献+
共找到146篇文章
< 1 2 8 >
每页显示 20 50 100
融合空洞空间金字塔池化和注意力的轻量化遥感影像道路提取 被引量:6
1
作者 刘志恒 岳子腾 +3 位作者 周绥平 江澄 节永师 陈雪梅 《航天返回与遥感》 CSCD 北大核心 2024年第1期111-122,共12页
针对高分辨率遥感影像中道路形状结构错综复杂,出现窄小型道路提取错误或漏分的问题,提出一种基于空洞空间金字塔池化和注意力机制的轻量化遥感影像道路提取方法。首先,在原始高分辨率网络(HRNet)基础上,通过引入空洞空间金字塔池化模块... 针对高分辨率遥感影像中道路形状结构错综复杂,出现窄小型道路提取错误或漏分的问题,提出一种基于空洞空间金字塔池化和注意力机制的轻量化遥感影像道路提取方法。首先,在原始高分辨率网络(HRNet)基础上,通过引入空洞空间金字塔池化模块,实现多尺度道路信息融合;再引入挤压激励通道注意力机制,增强网络特征表征质量;最后使用深度可分离卷积方法改进网络残差模块实现模型轻量化,以降低模型计算复杂度。在公开数据集上进行了模型性能测试,实验结果表明,文章所提算法的准确率、精确率、召回率、F1分数和平均交并比,相比原始HRNet分别提升了5.35%、2.15%、4.1%、3.15%和14.34%,且减少了36.1%的参数数量;相比其他网络,该算法突出了细小道路的特征,道路预测结果连续性、完整性好,并且模型小易于部署在实时检测设备中,有效改善了道路提取任务中错分和缺失的情况,是一种适应性更强、分割精度更高、更轻量化的多尺度道路提取算法。 展开更多
关键词 道路提取 空间金字塔池化 通道注意力机制 可分离卷积 高分辨率网络 遥感影像
在线阅读 下载PDF
基于多尺度特征融合与重构卷积的肝肿瘤图像分割方法
2
作者 马金林 酒志青 +4 位作者 马自萍 夏明格 张凯 程叶霞 马瑞士 《华南理工大学学报(自然科学版)》 北大核心 2025年第5期94-108,共15页
针对肝肿瘤图像特征表达能力不足和全局上下文信息传递受限的问题,该文提出一种基于改进U-Net的肝肿瘤图像分割方法。首先,设计了一种低秩重构卷积来优化传统卷积运算所导致的大量参数问题,并用其构建使用残差结构改进编解码器的卷积核... 针对肝肿瘤图像特征表达能力不足和全局上下文信息传递受限的问题,该文提出一种基于改进U-Net的肝肿瘤图像分割方法。首先,设计了一种低秩重构卷积来优化传统卷积运算所导致的大量参数问题,并用其构建使用残差结构改进编解码器的卷积核重构模块,使编码器保留更多的细节信息,并使解码器能更有效地恢复信息,以提升肝肿瘤图像特征的表达能力。然后,为丰富全局上下文信息的传递,设计了三分支空间金字塔池化模块来优化瓶颈结构的信息传递,打破单一路径的限制。接着,设计了多尺度特征融合模块来优化编码器信息的复用机制,增强模型对全局上下文信息的建模能力,并提升其在提取不同尺度肝肿瘤图像特征时的效能。最后,在LiTS2017和3DIRCADb数据集上对该文方法的性能进行了测试。实验结果表明:在LiTS2017数据集上的肝脏图像分割任务中,该文方法的Dice系数和IoU值分别达97.56%和95.25%,在肝肿瘤图像分割任务中的Dice系数和IoU值分别达89.71%和81.58%;在3DIRCADb数据集上的肝脏图像分割任务中,该文方法的Dice系数和IoU值分别达97.63%和95.39%,在肝肿瘤图像分割任务中的Dice系数和IoU值分别达89.62%和81.63%。 展开更多
关键词 肝肿瘤图像分割 卷积核重构 空间金字塔池化 多尺度特征融合
在线阅读 下载PDF
多尺度空洞卷积金字塔网络建筑物提取 被引量:6
3
作者 张春森 刘恒恒 +2 位作者 葛英伟 史书 张觅 《西安科技大学学报》 CAS 北大核心 2021年第3期490-497,574,共9页
为改善现有深度学习方法获取图像特征尺度单一、提取精度较低等问题,提出多尺度空洞卷积金字塔网络建筑物提取方法。多尺度空洞卷积金字塔网络以U-Net为基础模型,编码-解码阶段采用空洞卷积替换普通卷积扩大感受野,使得每个卷积层输出... 为改善现有深度学习方法获取图像特征尺度单一、提取精度较低等问题,提出多尺度空洞卷积金字塔网络建筑物提取方法。多尺度空洞卷积金字塔网络以U-Net为基础模型,编码-解码阶段采用空洞卷积替换普通卷积扩大感受野,使得每个卷积层输出包含比普通卷积更大范围的特征信息,以利于获取遥感影像中建筑物特征的全局信息,金字塔池化模块结合U-Net跳跃连接结构整合多尺度的特征,以获取高分辨率全局整体信息及低分辨率局部细节信息。在WHU数据集上进行提取实验,交并比达到了91.876%,相比其他语义分割网络交并比提升4.547%~10.826%,在Inria数据集上进行泛化实验,泛化精度高于其他网络。结果表明所提出的空洞卷积金字塔网络提取精度高,泛化能力强,且在不同尺度建筑物提取上具有良好的适应性。 展开更多
关键词 建筑物提取 多尺度 空洞卷积 金字塔池化
在线阅读 下载PDF
基于卷积金字塔网络的PPO算法求解作业车间调度问题
4
作者 徐帅 李艳武 +1 位作者 谢辉 牛晓伟 《现代制造工程》 北大核心 2025年第3期19-30,共12页
作业车间调度问题是一个经典的NP-hard组合优化问题,其调度方案的优劣直接影响制造系统的运行效率。为得到更优的调度策略,以最小化最大完工时间为优化目标,提出了一种基于近端策略优化(Proximal Policy Optimization,PPO)和卷积神经网... 作业车间调度问题是一个经典的NP-hard组合优化问题,其调度方案的优劣直接影响制造系统的运行效率。为得到更优的调度策略,以最小化最大完工时间为优化目标,提出了一种基于近端策略优化(Proximal Policy Optimization,PPO)和卷积神经网络(Convolutional Neural Network,CNN)的深度强化学习(Deep Reinforcement Learning,DRL)调度方法。设计了一种三通道状态表示方法,选取16种启发式调度规则作为动作空间,将奖励函数等价为最小化机器总空闲时间。为使训练得到的调度策略能够处理不同规模的调度算例,在卷积神经网络中使用空间金字塔池化(Spatial Pyramid Pooling,SPP),将不同维度的特征矩阵转化为固定长度的特征向量。在公开OR-Library的42个作业车间调度(Job-Shop Scheduling Problem,JSSP)算例上进行了计算实验。仿真实验结果表明,该算法优于单一启发式调度规则和遗传算法,在大部分算例中取得了比现有深度强化学习算法更好的结果,且平均完工时间最小。 展开更多
关键词 深度强化学习 作业车间调度 卷积神经网络 近端策略优化 空间金字塔池化
在线阅读 下载PDF
基于改进空间金字塔池化卷积神经网络的交通标志识别 被引量:12
5
作者 邓天民 方芳 周臻浩 《计算机应用》 CSCD 北大核心 2020年第10期2872-2880,共9页
针对雾天、光照、遮挡和大倾角等因素导致的交通标志识别准确率低、泛化性差等问题,提出一种基于神经网络的轻量级交通标志识别方法。首先,利用图像归一化、仿射变换和限制对比度自适应直方图均衡化(CLAHE)方法进行图像预处理,以提高图... 针对雾天、光照、遮挡和大倾角等因素导致的交通标志识别准确率低、泛化性差等问题,提出一种基于神经网络的轻量级交通标志识别方法。首先,利用图像归一化、仿射变换和限制对比度自适应直方图均衡化(CLAHE)方法进行图像预处理,以提高图像质量;其次,基于卷积神经网络(CNN),融合空间金字塔结构和批量归一化(BN)方法构建改进空间金字塔池化卷积神经网络(SPPN-CNN)模型,并利用Softmax分类器实现交通标志分类;最后,选用德国交通标志识别数据集(GTSRB),对比不同图像预处理方法、模型参数和模型结构的训练效果,并验证和测试所提模型。实验结果表明,SPPN-CNN模型的识别精度达到98.04%,损失小于0.1,在低配GPU条件下识别速率大于3000 frame/s,验证了模型精度高、泛化性强、实时性好的特点。 展开更多
关键词 图像去雾 空间金字塔池化 卷积神经网络 Softmax分类器 交通标志识别
在线阅读 下载PDF
基于空洞空间金字塔池化和多头自注意力的特征提取网络 被引量:4
6
作者 万黎明 张小乾 +1 位作者 刘知贵 李理 《计算机应用》 CSCD 北大核心 2022年第S02期79-85,共7页
针对深度学习在图像处理领域中多尺度特征提取能力弱、特征内部信息捕获能力差的问题,提出了一种基于空洞空间金字塔池化和多头自注意力的特征提取网络(PPSANet)。首先,引入小扩张率的空洞卷积对空洞空间金字塔池化(ASPP)模型进行改进,... 针对深度学习在图像处理领域中多尺度特征提取能力弱、特征内部信息捕获能力差的问题,提出了一种基于空洞空间金字塔池化和多头自注意力的特征提取网络(PPSANet)。首先,引入小扩张率的空洞卷积对空洞空间金字塔池化(ASPP)模型进行改进,提高局部特征信息的感受野;其次,将改进的ASPP模型合并到残差网络(ResNet)的每个残差块中,使网络在多个维度上都具有多尺度特征提取能力;最后,将残差网络的底层残差块替换为多头自注意力(MHSA),增强网络特征学习能力,捕获数据和特征内部的相关性。图像分割实验中,与残差网络相比,在肺结节数据集中DICE相似系数(DICE)提升了5.16个百分点,肝癌数据集中DICE提升了5.22个百分点;目标检测实验中,与残差网络相比,平均精度均值(MAP)提升了2.9个百分点。实验结果表明,PPSANet能够有效解决图像处理中多尺度特征提取能力弱和内部信息捕获能力差的问题,在一定程度上提高了图像处理的能力。 展开更多
关键词 深度学习 特征提取 图像分割 目标检测 自注意力 空洞空间金字塔池化
在线阅读 下载PDF
多尺度空间金字塔池化PCANet的行人检测 被引量:9
7
作者 夏胡云 叶学义 +1 位作者 罗宵晗 王鹏 《计算机工程》 CAS CSCD 北大核心 2019年第2期270-277,共8页
针对非理想条件下行人检测的性能和效率问题,提出多尺度空间金字塔PCANet。将空间金字塔作为网络的特征池化层,通过分层池化特征的方式获得图像的显著性特征,并将底层特征和高层特征级联以获得样本的多尺度特征的向量表示,输入SVM分类... 针对非理想条件下行人检测的性能和效率问题,提出多尺度空间金字塔PCANet。将空间金字塔作为网络的特征池化层,通过分层池化特征的方式获得图像的显著性特征,并将底层特征和高层特征级联以获得样本的多尺度特征的向量表示,输入SVM分类器。在INRIA和NICTA数据库中,与HOG、CNN等算法进行行人检测对比实验,结果表明,该算法有更高的正确检测率、更低的漏检率和误检率。 展开更多
关键词 行人检测 深度学习架构 主成分分析网络 多尺度特征 空间金字塔池化 显著性特征
在线阅读 下载PDF
基于空间金字塔池化和深度卷积神经网络的作物害虫识别 被引量:53
8
作者 张博 张苗辉 陈运忠 《农业工程学报》 EI CAS CSCD 北大核心 2019年第19期209-215,共7页
为了减少因作物害虫姿态多样性和尺度多样性导致其识别精度相对较低的问题,该文将空间金字塔池化与改进的YOLOv3深度卷积神经网络相结合,提出了一种基于空间金字塔池化的深度卷积神经网络农作物害虫种类识别算法,首先对测试图像上的害... 为了减少因作物害虫姿态多样性和尺度多样性导致其识别精度相对较低的问题,该文将空间金字塔池化与改进的YOLOv3深度卷积神经网络相结合,提出了一种基于空间金字塔池化的深度卷积神经网络农作物害虫种类识别算法,首先对测试图像上的害虫进行检测定位,然后对检测定位出的害虫进行种类识别。通过改进YOLOv3的网络结构,采用上采样与卷积操作相结合的方法实现反卷积,使算法能够有效地检测到图片中体型较小的作物害虫样本;通过对采集到的实际场景下20类害虫进行识别测试,识别精度均值可达到88.07%。试验结果表明,本文提出的识别算法能够有效地对作物害虫进行检测和种类识别。 展开更多
关键词 图像识别 算法 害虫分类 深度卷积神经网络 空间金字塔池化 卷积
在线阅读 下载PDF
尺度空间金字塔池化的肺结节分类研究 被引量:3
9
作者 张丽 强彦 +1 位作者 张小龙 刘继华 《计算机工程与设计》 北大核心 2019年第12期3520-3525,共6页
在计算机辅助诊断系统中对肺结节良恶性的准确分类至关重要,但由于肺结节形状大小变化较大,作为卷积神经网络(CNN)的输入,会形成噪声,干扰判断。融合多尺度空间金字塔池化(MSPP)对肺结节进行分类。在传统AlexNet模型的基础上做出改进,... 在计算机辅助诊断系统中对肺结节良恶性的准确分类至关重要,但由于肺结节形状大小变化较大,作为卷积神经网络(CNN)的输入,会形成噪声,干扰判断。融合多尺度空间金字塔池化(MSPP)对肺结节进行分类。在传统AlexNet模型的基础上做出改进,更利于肺结节图像的输入;采用多个尺度的结节范围,减少噪声;使用多尺度空间金字塔(MSPP)策略提高分类准确性。实验结果表明,该方法达到92.65%的准确性,在准确性、敏感度、特异度、ROC曲线下面积值上均优于其它分类方法。 展开更多
关键词 多尺度 空间金字塔池化 卷积神经网络 特征提取 分类
在线阅读 下载PDF
基于空洞空间池化金字塔的自动驾驶图像语义分割方法 被引量:7
10
作者 王大方 刘磊 +3 位作者 曹江 赵刚 赵文硕 唐伟 《汽车工程》 EI CSCD 北大核心 2022年第12期1818-1824,共7页
如果车辆在道路上能精确而快速地理解人和车的语义,就能在很大程度上对障碍躲避、路径规划等做出指导。现有的基于深度学习的语义分割方法存在分割速度和分割精度不能兼得等问题。本文在现有语义分割网络的基础上,通过在特征提取基准网... 如果车辆在道路上能精确而快速地理解人和车的语义,就能在很大程度上对障碍躲避、路径规划等做出指导。现有的基于深度学习的语义分割方法存在分割速度和分割精度不能兼得等问题。本文在现有语义分割网络的基础上,通过在特征提取基准网络后添加空洞空间池化金字塔结构,可以获取图像的多尺度语义信息。实验结果表明,文中提出的A_ASPP_1和A_ASPP_2两个模块能对自动驾驶场景中常见的人和各类车辆图像进行有效的分割。对应的两种改进的网络结构虽然分割速度稍有降低,但其训练结果的平均交并比相比现有双分支网络BiSeNet分别提升了2.1和1.2个百分点。 展开更多
关键词 语义分割 自动驾驶 空洞空间池化金字塔
在线阅读 下载PDF
基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法 被引量:4
11
作者 张善文 许新华 齐国红 《弹箭与制导学报》 北大核心 2023年第5期1-8,共8页
针对遥感图像(RSI)中的目标相对较小、形变多样,且包含分布不均匀的非目标和背景等问题,提出一种基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法。该方法利用空洞多尺度卷积提取多尺度目标的分类特征,运用空洞空间池化金字塔模... 针对遥感图像(RSI)中的目标相对较小、形变多样,且包含分布不均匀的非目标和背景等问题,提出一种基于空洞空间金字塔池化U-Net的遥感图像多目标检测方法。该方法利用空洞多尺度卷积提取多尺度目标的分类特征,运用空洞空间池化金字塔模块扩大卷积特征图的感受野,提取更充分的目标特征,并采用注意力机制、残差连接和长跳跃连接充分保留卷积层提取的RSI的敏感特征。在公开遥感图像数据库EORSSD上的实验结果表明,所提出的方法能够从复杂多样的RSI中检测多尺度目标,检测精度为96.56%。 展开更多
关键词 遥感图像多目标检测 空洞多尺度卷积 空洞空间金字塔池化 空洞空间金字塔池化U-Net
在线阅读 下载PDF
空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草 被引量:75
12
作者 孙俊 何小飞 +3 位作者 谭文军 武小红 沈继锋 陆虎 《农业工程学报》 EI CAS CSCD 北大核心 2018年第11期159-165,共7页
针对传统Alex Net模型参数大、特征尺度单一的问题,该文提出一种空洞卷积与全局池化相结合的多尺度特征融合卷积神经网络识别模型。通过对初始卷积层的卷积核进行膨胀,以增大其感受野而不改变参数计算量,并采用全局池化代替传统的全连... 针对传统Alex Net模型参数大、特征尺度单一的问题,该文提出一种空洞卷积与全局池化相结合的多尺度特征融合卷积神经网络识别模型。通过对初始卷积层的卷积核进行膨胀,以增大其感受野而不改变参数计算量,并采用全局池化代替传统的全连接层来减少模型的参数。通过设置不同膨胀系数的初始卷积层卷积核与全局池化层类型,以及设置不同Batch Size,得到8种改进模型,用于训练识别共12种农作物幼苗与杂草,并从建立的模型中选出最优模型。改进后的最优模型与传统Alex Net模型相比,仅经过4次训练迭代,就能达到90%以上的识别准确率,平均测试识别准确率达到98.80%,分类成功指数达到96.84%,模型内存需求减少为4.20 MB。实际田间预测野芥与雀麦幼苗的准确率都能达到75%左右,说明该文最优模型对正常情况下的幼苗识别性能较好,但对复杂黑暗背景下的甜菜幼苗准确率为60%,对恶劣背景下的识别性能还有待提升。由于模型使用了更宽的网络结构,增加了特征图的多尺度融合,保持对输入空间变换的不变性,故对正常情况下不同作物幼苗与杂草的识别能力较强。该文改进模型能达到较高的平均识别准确率及分类成功率,可为后续深入探索复杂田间背景下的杂草识别以及杂草与幼苗识别装置的研制打下基础。 展开更多
关键词 图像识别 农作物 幼苗 杂草 空洞卷积 全局池化 多尺度特征融合 卷积神经网络
在线阅读 下载PDF
应用空间金字塔池化LBP特征的舰船检测识别 被引量:6
13
作者 郭少军 陆斌 娄树理 《激光与红外》 CAS CSCD 北大核心 2017年第6期783-788,共6页
传统LBP特征进行目标识别主要依靠局部图像LBP特征直方图来实现,通常只能满足小邻域内小量采样点计算LBP特征的情况。当需要计算像素在更大空间邻域更多采样点的对比纹理特征时,直方图特征的维度将会造成维数灾难。本文提出应用空间金... 传统LBP特征进行目标识别主要依靠局部图像LBP特征直方图来实现,通常只能满足小邻域内小量采样点计算LBP特征的情况。当需要计算像素在更大空间邻域更多采样点的对比纹理特征时,直方图特征的维度将会造成维数灾难。本文提出应用空间金字塔池化方式对LBP特征进行池化,并在LBP特征计算过程中采用多种邻域尺度和不同采样点数量,充分挖掘不同尺度下图像的纹理特征,从而建立完备的图像描述特征。在利用支持向量机或其他训练网络进行识别模板训练时,需要输入特征集具有相同的维度,传统LBP算法首先对图像按一定尺寸重构/裁切,时常会发生畸变而与现实出现偏离和信息丢失,对识别正确率存在影响。本文通过空间金字塔尺度对任意大小图像的LBP特征进行池化,输出特征维度为固定长度,有效避免了图像畸变与信息丢失的情况。实验证明,本文方法不仅避免了维度灾难的发生,同时能够更高效地提高目标检测率和识别正确率。 展开更多
关键词 空间金字塔 池化 多尺度 LBP特征 舰船检测 舰船识别
在线阅读 下载PDF
基于序的空间金字塔池化网络的人群计数方法 被引量:38
14
作者 时增林 叶阳东 +1 位作者 吴云鹏 娄铮铮 《自动化学报》 EI CSCD 北大核心 2016年第6期866-874,共9页
视频中的人群计数在智能监控领域具有重要价值.由于摄像机透视效果、图像背景、人群密度分布不均匀和行人遮挡等干扰因素的制约,基于底层特征的传统计数方法准确率较低.本文提出一种基于序的空间金字塔池化(Rank-based spatial pyramid ... 视频中的人群计数在智能监控领域具有重要价值.由于摄像机透视效果、图像背景、人群密度分布不均匀和行人遮挡等干扰因素的制约,基于底层特征的传统计数方法准确率较低.本文提出一种基于序的空间金字塔池化(Rank-based spatial pyramid pooling,RSPP)网络的人群计数方法.该方法将原图像分成多个具有相同透视范围的子区域并在各个子区域分别取不同尺度的子图像块,采用基于序的空间金字塔池化网络估计子图像块人数,然后相加所有子图像块人数得出原图像人数.提出的图像分块方法有效地消除了摄像机透视效果和人群密度分布不均匀对计数的影响.提出的基于序的空间金字塔池化不仅能够处理多种尺度的子图像块,而且解决了传统池化方法易损失大量重要信息和易过拟合的问题.实验结果表明,本文方法相比于传统方法具有准确率高和鲁棒性好的优点. 展开更多
关键词 人群计数 空间金字塔池化 深度学习 卷积神经网络 岭回归
在线阅读 下载PDF
联合膨胀卷积残差网络和金字塔池化表达的高分影像建筑物自动识别 被引量:12
15
作者 乔文凡 慎利 +1 位作者 戴延帅 曹云刚 《地理与地理信息科学》 CSCD 北大核心 2018年第5期56-62,共7页
针对传统建筑物提取方法对视觉特征人为设计的依赖,以及基于全卷积神经网络模型对提取目标边缘轮廓保真度差和对不同粒度建筑物自适应提取弱等问题,该文提出一种联合膨胀卷积残差网络和金字塔池化表达的高分辨率遥感影像建筑物自动识别... 针对传统建筑物提取方法对视觉特征人为设计的依赖,以及基于全卷积神经网络模型对提取目标边缘轮廓保真度差和对不同粒度建筑物自适应提取弱等问题,该文提出一种联合膨胀卷积残差网络和金字塔池化表达的高分辨率遥感影像建筑物自动识别方法,其所构建的全卷积神经网络包括膨胀卷积残差网络和金字塔池化单元两部分。在残差网络中,通过膨胀卷积限制模型中特征图分辨率的严重损失,从而有效地保留更多的细节特征;在金字塔池化单元中,通过全局平均池化将特征图池化为不同尺度,并与原始的输入特征图相融合,形成多尺度特征表达。基于马萨诸塞州地区具有复杂地表覆盖的公开遥感影像数据集开展的实验表明,相比目前较为流行的几种全卷积神经网络分类方法,该文所提出的联合膨胀卷积残差网络和金字塔池化表达方法的提取精度更高,建筑物提取结果能够有效地保留边界的细节轮廓信息,同时对不同形状大小建筑物的自适应提取能力更强。 展开更多
关键词 高分辨率遥感 建筑物识别 卷积神经网络 金字塔池化 多尺度表达
在线阅读 下载PDF
基于深度敏感空间金字塔池化的RGBD语义分割 被引量:4
16
作者 杨胜杰 仇振安 +1 位作者 高小宁 李建勋 《电光与控制》 CSCD 北大核心 2020年第12期84-89,共6页
基于标准的2D卷积核的RGBD语义分割模型多是将深度图作为一个单独的通道,由于其卷积核特性的限制,无法充分挖掘深度信息带来的几何结构信息。针对该缺陷,构建深度敏感卷积核和池化层实现对深度信息的丰富挖掘;并使用深度敏感空间金字塔... 基于标准的2D卷积核的RGBD语义分割模型多是将深度图作为一个单独的通道,由于其卷积核特性的限制,无法充分挖掘深度信息带来的几何结构信息。针对该缺陷,构建深度敏感卷积核和池化层实现对深度信息的丰富挖掘;并使用深度敏感空间金字塔池化对多尺度信息进行提取,实现对不同尺度物体分割的效果。NYU v2和SUN RGB-D数据集上的实验结果表明此方法有效提高了整体的语义分割精度。 展开更多
关键词 RGBD语义分割 深度敏感卷积 空间金字塔池化
在线阅读 下载PDF
基于多尺度金字塔池化的调制识别算法 被引量:1
17
作者 李泊含 刘芸江 李艳福 《电光与控制》 CSCD 北大核心 2022年第12期18-24,40,共8页
针对传统基于特征提取(FB)的信号调制识别算法所存在的识别准确率低、特征提取难度大以及算法泛化性能差等问题,结合卷积神经网络(CNN)和多尺度金字塔池化(MSPP)提出一种基于MSPP-CNN的信号自动调制识别(AMR)算法。在所提出的算法中,使... 针对传统基于特征提取(FB)的信号调制识别算法所存在的识别准确率低、特征提取难度大以及算法泛化性能差等问题,结合卷积神经网络(CNN)和多尺度金字塔池化(MSPP)提出一种基于MSPP-CNN的信号自动调制识别(AMR)算法。在所提出的算法中,使用多尺度金字塔池化提高模型对不同调制信号的非线性特征提取能力,使模型具有更强的特征表达和泛化性能;在CNN模型的构建过程中,使用不同的卷积、池化以及激活方法对模型进行最优化验证,从而保证模型结构以及参数的合理性。实验结果显示,所提算法在信噪比为-18 dB,0 dB,18 dB时的识别准确率分别达到56%,62.98%,92.04%;与其他传统特征提取算法以及CNN算法的大量对比试验,证明了所提算法的有效性和高识别准确率。 展开更多
关键词 调制识别 多尺度金字塔池化 深度学习 卷积神经网络
在线阅读 下载PDF
基于EESP与ODConv的多尺度轴承故障诊断方法
18
作者 任义 陈大鹏 +1 位作者 栾方军 袁帅 《机电工程》 北大核心 2025年第5期832-844,920,共14页
为了解决轴承故障诊断中多尺度特征提取准确性和稳定性不足的问题,提出了一种融合增强高效空间金字塔(EESP)与全维动态卷积(ODConv)的多尺度轴承诊断方法,即基于多尺度全维动态卷积网络(MSODConvNet)的轴承故障诊断模型。首先,采用了基... 为了解决轴承故障诊断中多尺度特征提取准确性和稳定性不足的问题,提出了一种融合增强高效空间金字塔(EESP)与全维动态卷积(ODConv)的多尺度轴承诊断方法,即基于多尺度全维动态卷积网络(MSODConvNet)的轴承故障诊断模型。首先,采用了基于EESP的空洞卷积金字塔模块,利用了多尺度空洞卷积结构增强了特征提取能力,有效地捕捉了不同尺度的特征信息,从而提升了模型对复杂信号的感知能力;其次,采用的ODConv模块使卷积核在多个维度上同时进行了高效运作,使用动态调整卷积核结构提升了模型的灵活性和适应性,使其能够更好地应对复杂数据中的多样化模式和特征;最后,在ODConv模块中引入了双跳跃连接机制,进一步强化了信息在深层网络中的传递效果,确保了特征信息的完整性和高效传递。研究结果表明:基于EESP和ODConv的多尺度模型在分类准确率方面得到较大的提高,在凯斯西储大学(CWRU)数据集上的准确率可达99.50%,表现出较高的准确性和稳定性,并在与其他对比方法的比较中展现出较高的优势。该研究可为工业设备的智能维护和故障诊断提供新的方法和思路,为实现更精确和更高效的故障诊断提供理论依据。 展开更多
关键词 轴承故障诊断 多尺度特征提取 增强高效空间金字塔 多尺度全维动态卷积网络 双跳跃连接机制 故障诊断模型
在线阅读 下载PDF
基于AOD-Net改进的多尺度图像去雾算法
19
作者 王超 王婷 +1 位作者 王少军 杨万扣 《计算机工程》 北大核心 2025年第7期305-313,共9页
经典AOD-Net(All in One Dehazing Network)去雾后的图像存在细节清晰度不足、明暗反差过大和画面昏暗等问题。为了解决这些图像去雾问题,提出一种在AOD-Net基础上改进的多尺度算法。改进的网络结构采用深度可分离卷积替换传统卷积方式... 经典AOD-Net(All in One Dehazing Network)去雾后的图像存在细节清晰度不足、明暗反差过大和画面昏暗等问题。为了解决这些图像去雾问题,提出一种在AOD-Net基础上改进的多尺度算法。改进的网络结构采用深度可分离卷积替换传统卷积方式,减少了冗余参数量,加快了计算速度并有效地减少了模型的内存占用量,从而提高了算法去雾效率;同时采用多尺度结构在不同尺度上对雾图进行分析和处理,更好地捕捉图像的细节信息,提升了网络对图像细节的处理能力,解决了原算法去雾时存在的细节模糊问题;最后在网络结构中加入金字塔池化模块,用于整合图像不同区域的上下文信息,扩展了网络的感知范围,从而提高网络模型获取有雾图像全局信息的能力,进而改善图像色调失真、细节丢失等问题。此外,引入一个低照度增强模块,通过明确预测噪声实现去噪的目标,从而恢复曝光不足的图像。在低光去雾图像中,峰值信噪比(PSNR)和结构相似性(SSIM)指标均有显著提升,处理后的图片具有更高的整体自然度。实验结果表明:与经典AOD-Net去雾的结果相比,改进算法能够更好地恢复图像的细节和结构,使得去雾后的图像更自然,饱和度和对比度也更加平衡;在RESIDE的SOTS数据集中的室外和室内场景,相较于经典AOD-Net,改进算法的PSNR分别提升了4.5593 dB和4.0656 dB,SSIM分别提升了0.0476和0.0874。 展开更多
关键词 多尺度网络结构 深度可分离卷积 金字塔池化模块 低照度增强模块 图像去雾
在线阅读 下载PDF
DR_YOLOv8s++:改进卷积注意力机制和损失函数的SAR影像船舰目标检测网络
20
作者 杨明秋 陈国坤 +1 位作者 董燕 左小清 《遥感信息》 北大核心 2025年第2期159-168,共10页
针对目前SAR影像船舰目标检测方法存在多场景下检测精度不高、漏检、模型泛化能力差的问题,尝试以YOLOv8s网络为基础,提出新的注意力机制D-CBAM,并定义新的损失函数RIoU,以及将最新的可变形卷积DCNv4替换标准卷积,引入融合空间金字塔池... 针对目前SAR影像船舰目标检测方法存在多场景下检测精度不高、漏检、模型泛化能力差的问题,尝试以YOLOv8s网络为基础,提出新的注意力机制D-CBAM,并定义新的损失函数RIoU,以及将最新的可变形卷积DCNv4替换标准卷积,引入融合空间金字塔池化focal modulation networks来提升网络性能,提出的网络命名为DR_YOLOv8s++检测网络。为验证DR_YOLOv8s++网络的有效性和通用性,在SSDD、HRSID数据集上进行实验。结果表明,所提出算法的平均精度均值分别达到98%、97.5%,优于其他经典算法,模型性能提升明显,同其他目标检测算法相比,具有较强的泛化能力。 展开更多
关键词 船舰目标检测 SAR影像 注意力机制 可变形卷积 融合空间金字塔池化 损失函数
在线阅读 下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部