利用CMAQ(Community Multiscale Air Quality Model)模式预报产品和福州市2007年1月至2010年6月大气污染物的观测资料以及常规地面气象观测资料,根据动力-统计相结合的预报方法,通过多元线性逐步回归,建立不同天气系统下CMAQ模式产品...利用CMAQ(Community Multiscale Air Quality Model)模式预报产品和福州市2007年1月至2010年6月大气污染物的观测资料以及常规地面气象观测资料,根据动力-统计相结合的预报方法,通过多元线性逐步回归,建立不同天气系统下CMAQ模式产品和多类预报因子相结合的日污染物浓度预报模型.结果表明,影响福州市的天气系统共分为大陆高压、副热带高压、切变、暖区辐合、高空槽、台风和热带辐合带7类天气型.在暖区辐合、高空槽和大陆高压控制下,福州市的空气质量较差,而副热带高压和台风系统影响时,福州市的空气质量最好.日污染物浓度预报方程置信度均为P=0.000,模型有统计学意义.利用模型对2010年7~12月福州市各污染物浓度进行预报效果回代检验,模型对PM10的污染指数等级预报正确率达到了71.3%,对SO2和NO2的级别预报正确率达到了100%,日预报综合评分平均达88.8分.展开更多
随着城市化、工业化的快速发展,空气污染已经成为了公众最关注的问题之一。为了提高空气质量预报的准确度,以多尺度空气质量模型(Community Multi-Scale Air Quality,CMAQ)为工具,结合中尺度WRF(Weather Research and Forecast Model)...随着城市化、工业化的快速发展,空气污染已经成为了公众最关注的问题之一。为了提高空气质量预报的准确度,以多尺度空气质量模型(Community Multi-Scale Air Quality,CMAQ)为工具,结合中尺度WRF(Weather Research and Forecast Model)气象预报数据、气象观测数据、污染物浓度观测数据,基于极端随机树方法建立了WRF-CMAQ-MOS(Weather Research and Forecast Model-Community Multi-Scale Air Quality-Model Output Statistics)统计修正模型。结果表明,结合WRF气象预报的CMAQ-MOS方法明显修正了由于模型非客观性产生的模式预报偏差,提高了预报效果。使用线性回归方法不能获得较好的优化效果,选取极端随机树方法和梯度提升回归树方法对模型进行改进和比较,发现极端随机树方法对结合WRF气象要素的CMAQ-MOS模型有较大的提升。针对徐州地区空气质量预报,进一步使用基于极端随机树方法的WRF-CMAQ-MOS模型对2016年1、2、3月的空气质量指数(AQI)及PM_(2.5)、PM_(10)、NO_2、SO_2、O_3、CO六种污染物优化试验进行验证,发现优化效果最为明显的两种污染物分别是NO_2及O_3,2016年1、2、3月整体相关系数NO_2由0.35升至0.63,O_3由0.39升至0.79,均方根误差NO_2由0.0346减至0.0243 mg/m^3,O_3由0.0447减至0.0367 mg/m^3。文中发展的WRFCMAQ-MOS统计修正模型可以有效提升预报精度,在空气质量预报中具有很好的应用前景。展开更多
文摘利用CMAQ(Community Multiscale Air Quality Model)模式预报产品和福州市2007年1月至2010年6月大气污染物的观测资料以及常规地面气象观测资料,根据动力-统计相结合的预报方法,通过多元线性逐步回归,建立不同天气系统下CMAQ模式产品和多类预报因子相结合的日污染物浓度预报模型.结果表明,影响福州市的天气系统共分为大陆高压、副热带高压、切变、暖区辐合、高空槽、台风和热带辐合带7类天气型.在暖区辐合、高空槽和大陆高压控制下,福州市的空气质量较差,而副热带高压和台风系统影响时,福州市的空气质量最好.日污染物浓度预报方程置信度均为P=0.000,模型有统计学意义.利用模型对2010年7~12月福州市各污染物浓度进行预报效果回代检验,模型对PM10的污染指数等级预报正确率达到了71.3%,对SO2和NO2的级别预报正确率达到了100%,日预报综合评分平均达88.8分.
文摘随着城市化、工业化的快速发展,空气污染已经成为了公众最关注的问题之一。为了提高空气质量预报的准确度,以多尺度空气质量模型(Community Multi-Scale Air Quality,CMAQ)为工具,结合中尺度WRF(Weather Research and Forecast Model)气象预报数据、气象观测数据、污染物浓度观测数据,基于极端随机树方法建立了WRF-CMAQ-MOS(Weather Research and Forecast Model-Community Multi-Scale Air Quality-Model Output Statistics)统计修正模型。结果表明,结合WRF气象预报的CMAQ-MOS方法明显修正了由于模型非客观性产生的模式预报偏差,提高了预报效果。使用线性回归方法不能获得较好的优化效果,选取极端随机树方法和梯度提升回归树方法对模型进行改进和比较,发现极端随机树方法对结合WRF气象要素的CMAQ-MOS模型有较大的提升。针对徐州地区空气质量预报,进一步使用基于极端随机树方法的WRF-CMAQ-MOS模型对2016年1、2、3月的空气质量指数(AQI)及PM_(2.5)、PM_(10)、NO_2、SO_2、O_3、CO六种污染物优化试验进行验证,发现优化效果最为明显的两种污染物分别是NO_2及O_3,2016年1、2、3月整体相关系数NO_2由0.35升至0.63,O_3由0.39升至0.79,均方根误差NO_2由0.0346减至0.0243 mg/m^3,O_3由0.0447减至0.0367 mg/m^3。文中发展的WRFCMAQ-MOS统计修正模型可以有效提升预报精度,在空气质量预报中具有很好的应用前景。
文摘研究了CMAQ大气模型在64位Linux操作系统上不同CPU核心数目并行计算模拟耗时以及结果的差异情况。研究结果表明,并行计算能大幅缩短CMAQ模拟耗时,以16个CPU核心并行处理为性价比最佳值;此时连续模拟中国区域37天空气质量状况(分辨率36 km、167行×97列、垂直14层)平均耗时小于16 m in/d,而相同情况下单核模拟耗时大于2 h/d;多于16个核心并行处理时,随核心数量的增加模型性能提升的趋势减缓;操作系统和参与运算的核心数目对CMAQ模型模拟结果没有影响。