期刊文献+
共找到433篇文章
< 1 2 22 >
每页显示 20 50 100
融合多尺度特征与注意力的小样本目标检测 被引量:1
1
作者 张英俊 甘望阳 +1 位作者 谢斌红 张睿 《小型微型计算机系统》 北大核心 2025年第3期689-696,共8页
针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatia... 针对现有小样本目标检测模型存在的尺度变化问题,支持集与查询集之间的外观变化、遮挡导致的误检与漏检问题,本文提出一种融合多尺度特征与注意力的小样本目标检测模型.首先,采用ResNet-101网络进行特征提取,同时引入ASPP(Atrous Spatial Pyramid Pooling)模块获取不同的感受野,以捕获目标细节信息的多尺度特征.其次,采用Bi-FPN网络进行多尺度特征融合,获得更具代表性的查询特征与支持特征,有效缓解尺度变化问题.然后,利用提出的注意力引导特征增强模块对查询特征与支持特征进行自身关注,使得它们具有更好的判别能力,由此促进查询特征与支持特征的融合,以更好地应对外观变化和遮挡带来的挑战,从而缓解误检、漏检问题.最后,将分类头与边界框回归头进行解耦,分别对RPN网络基于细粒度查询特征产生的候选区域进行目标分类与目标定位.在PASCAL VOC与MS COCO数据集上的实验结果表明,所提模型的检测性能优于主流的小样本目标检测模型,相较于基线模型DCNet,mAP平均分别提升了3.5%与2.1%. 展开更多
关键词 小样本学习 元学习 目标检测 多尺度特征融合 注意力机制
在线阅读 下载PDF
自注意力机制下多尺度特征融合的轴承故障诊断
2
作者 史浩进 邱吉尔 +2 位作者 陶洪峰 唐金琳 靳广虎 《控制工程》 北大核心 2025年第9期1603-1610,共8页
针对多层次、非线性和非平稳的滚动轴承振动信号会导致轴承跨工况故障诊断困难的问题,提出了一种自注意力机制下多尺度特征融合的故障诊断模型。首先,通过不同尺度的卷积核分别提取轴承原始振动信号的低频特征与局部时域特征;其次,构建... 针对多层次、非线性和非平稳的滚动轴承振动信号会导致轴承跨工况故障诊断困难的问题,提出了一种自注意力机制下多尺度特征融合的故障诊断模型。首先,通过不同尺度的卷积核分别提取轴承原始振动信号的低频特征与局部时域特征;其次,构建嵌入多头自注意力(multi-headed self attention,MHSA)模块和压缩激励自注意力(squeezeand-excitation,SE)模块的多尺度特征融合模块MHSA-SE代替传统的拼接方法,进一步挖掘振动信号时频特征的内在联系,以提高跨工况诊断的性能。同时,采用批量归一化处理,以减少内部变量偏移,改善训练性能。实验结果表明,该端到端故障诊断方法能充分联合不同尺度特征,使跨工况的平均诊断精度达到97%以上。 展开更多
关键词 滚动轴承 故障诊断 卷积神经网络 多尺度特征融合 注意力机制
在线阅读 下载PDF
结合注意力机制和多尺度特征融合的三维手部姿态估计
3
作者 郭诗月 党建武 +1 位作者 王阳萍 雍玖 《计算机应用》 北大核心 2025年第4期1293-1299,共7页
针对因遮挡和自相似性导致的从单张RGB图像估计三维手部姿态不精确的问题,提出结合注意力机制和多尺度特征融合的三维手部姿态估计算法。首先,提出结合扩张卷积和CBAM(Convolutional Block Attention Module)注意力机制的感受强化模块(S... 针对因遮挡和自相似性导致的从单张RGB图像估计三维手部姿态不精确的问题,提出结合注意力机制和多尺度特征融合的三维手部姿态估计算法。首先,提出结合扩张卷积和CBAM(Convolutional Block Attention Module)注意力机制的感受强化模块(SEM),以替换沙漏网络(HGNet)中的基本块(Basicblock),在扩大感受野的同时增强对空间信息的敏感性,从而提高手部特征的提取能力;其次,设计一种结合SPCNet(Spatial Preserve and Contentaware Network)和Soft-Attention改进的多尺度信息融合模块SS-MIFM(SPCNet and Soft-attention-Multi-scale Information Fusion Module),在充分考虑空间内容感知机制的情况下,有效地聚合多级特征,并显著提高二维手部关键点检测的准确性;最后,利用2.5D姿态转换模块将二维姿态转换为三维姿态,从而避免二维关键点坐标直接回归计算三维姿态信息导致的空间丢失问题。实验结果表明,在InterHand2.6M数据集上,所提算法的双手关节点平均误差(MPJPE)、单手MPJPE和根节点平均误差(MRRPE)分别达到了12.32、9.96和29.57 mm;在RHD(Rendered Hand pose Dataset)上,与InterNet和QMGR-Net算法相比,所提算法的终点误差(EPE)分别降低了2.68和0.38 mm。以上结果说明了所提算法能够更准确地估计手部姿态,且在一些双手交互和遮挡的场景下有更高的鲁棒性。 展开更多
关键词 手部姿态估计 多尺度特征融合 注意力机制 高分辨率网络 沙漏网络
在线阅读 下载PDF
基于多尺度注意力与特征融合的行人重识别方法研究
4
作者 吴宇森 于宝华 +1 位作者 荣江 张数 《石河子大学学报(自然科学版)》 北大核心 2025年第1期122-132,共11页
行人重识别又称行人再识别,是一种在跨摄像头环境下识别相同行人的技术。目前,由于行人姿势变化、灯光角度、障碍遮挡等问题影响,导致现有方法提取行人特征受到干扰较大,影响识别效果。针对该问题,提出将NFormer嵌入主干网络的不同层级... 行人重识别又称行人再识别,是一种在跨摄像头环境下识别相同行人的技术。目前,由于行人姿势变化、灯光角度、障碍遮挡等问题影响,导致现有方法提取行人特征受到干扰较大,影响识别效果。针对该问题,提出将NFormer嵌入主干网络的不同层级,构建多尺度注意力模块(Multi-Scale Attention-NFormer, MSAN),提取细节丰富的底层特征与表征能力强的高层特征进行融合;提出结合可学习视觉中心与多层感知器,构建了基于可学习视觉中心与多层感知器的特征融合模块(Feature Fusion with Learnable Visual Centers and Multilayer Perceptron, FFLM),提取关联位置信息的局部特征与长距离依赖的全局特征,并将其融合获取更具辨别性的特征表达。为了使主干网络与头部网络更适用于特征融合任务,对ResNet50的激活函数和搭建架构进行改进,保留了更丰富的特征信息;在头部网络添加BN层和GeM池化,缓解了损失函数优化方向不同步的问题。实验结果表明,所提方法在Market-1501和DukeMTMC-reID数据集上的首位命中率分别达到了95.8%、90.2%,平均精度均值为93.0%、84.7%,所提取的特征更具有判别性,识别率更高。 展开更多
关键词 行人重识别 特征融合 多尺度 注意力机制 深度学习
在线阅读 下载PDF
基于多尺度特征融合和注意力机制的视频异常检测方法
5
作者 吴祥 肖剑 吉根林 《应用科学学报》 北大核心 2025年第2期234-244,共11页
视频画面中的运动物体在不同时刻往往呈现出多样的尺度大小,这给视频异常检测带来了一定的挑战。尽管传统的生成对抗网络在视频异常检测任务上取得了一定成效,但因其采用单一尺度的特征提取方法,无法充分捕获不同尺度物体的特征,从而限... 视频画面中的运动物体在不同时刻往往呈现出多样的尺度大小,这给视频异常检测带来了一定的挑战。尽管传统的生成对抗网络在视频异常检测任务上取得了一定成效,但因其采用单一尺度的特征提取方法,无法充分捕获不同尺度物体的特征,从而限制了其异常检测的性能。针对该问题,本文基于生成对抗网络结构,提出了一种基于多尺度特征融合和注意力机制的视频异常检测方法。使用大小不同的卷积核捕获不同感受野的特征,并将它们进行融合以获得多尺度的特征表示。此外,在生成器的转置卷积层后引入坐标注意力机制,自适应分配特征图权重,从而增强模型对关键特征的感知能力。在公开数据集UCSD Ped2和Avenue上的实验结果表明,本文方法的性能优于其他同类方法。 展开更多
关键词 视频异常检测 深度学习 生成对抗网络 多尺度特征融合 注意力机制
在线阅读 下载PDF
基于双向交叉注意力的多尺度特征融合情感分类
6
作者 梁一鸣 范菁 柴汶泽 《计算机应用》 北大核心 2025年第9期2773-2782,共10页
针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机... 针对现有情感分类模型在深层情感理解上的局限性、传统注意力机制的单向性束缚以及自然语言处理(NLP)中的类别不平衡等问题,提出一种融合多尺度BERT(Bidirectional Encoder Representations from Transformers)特征和双向交叉注意力机制的情感分类模型M-BCA(Multi-scale BERT features with Bidirectional Cross Attention)。首先,从BERT的低层、中层和高层分别提取多尺度特征,以捕捉句子文本的表面信息、语法信息和深层语义信息;其次,利用三通道门控循环单元(GRU)进一步提取深层语义特征,从而增强模型对文本的理解能力;最后,为促进不同尺度特征之间的交互与学习,引入双向交叉注意力机制,从而增强多尺度特征之间的相互作用。此外,针对不平衡数据问题,设计数据增强策略,并采用混合损失函数优化模型对少数类别样本的学习。实验结果表明,在细粒度情感分类任务中,M-BCA表现优异。M-BCA在处理分布不平衡的多分类情感数据集时,它的性能显著优于大多数基线模型。此外,M-BCA在少数类别样本的分类任务中表现突出,尤其是在NLPCC 2014与Online_Shopping_10_Cats数据集上,MBCA的少数类别的Macro-Recall领先其他所有对比模型。可见,该模型在细粒度情感分类任务中取得了显著的性能提升,并适用于处理不平衡数据集。 展开更多
关键词 BERT 细粒度情感分类 多尺度特征融合 数据增强 混合损失函数 双向交叉注意力
在线阅读 下载PDF
基于融合注意力和多尺度特征的热轧带钢表面缺陷检测方法
7
作者 包广清 周芷意 孟庆成 《北京工业大学学报》 北大核心 2025年第8期944-956,共13页
针对热扎带钢表面缺陷面积较小、形态多样、边界模糊且背景复杂的问题,提出一种热轧带钢表面缺陷检测模型SFSP-YOLOv7。首先,通过改进k-means++聚类算法调整先验框维度,使用交并比(intersection over union, IoU)距离替换欧氏距离度量,... 针对热扎带钢表面缺陷面积较小、形态多样、边界模糊且背景复杂的问题,提出一种热轧带钢表面缺陷检测模型SFSP-YOLOv7。首先,通过改进k-means++聚类算法调整先验框维度,使用交并比(intersection over union, IoU)距离替换欧氏距离度量,引入遗传算法(genetic algorithm, GA)以获得更具代表性的锚框尺寸,并提升模型的回归速度和小面积缺陷检测的精确度。其次,对于边界模糊且背景复杂的缺陷,提出一种目标检测边界框损失函数FocalSIoU,以减少模型中不必要特征的学习,加快检测速度,提升预测框的回归效果。最后,设计一种多尺度特征融合模块(multi-scale feature fusion module, MFFM),通过多尺度信息融合增强模型特征提取能力,提高小目标的检测精确度,并改善模型检测误检率。在模型Head结构中引入空到深(space to depth, SPD)卷积模块对模型进行改进,避免细粒度信息的丢失,降低目标漏检率。通过NEU-DET数据集进行验证,结果表明,SFSP-YOLOv7模型检测的平均精度均值(mean average precision, mAP)为78.3%,相比原YOLOv7模型提升了5.0个百分点,表明提出的检测方法具有有效性。 展开更多
关键词 带钢表面缺陷检测 深度学习 YOLOv7 损失函数 注意力机制 多尺度特征融合
在线阅读 下载PDF
基于动态自适应通道注意力特征融合的小目标检测 被引量:2
8
作者 吴迪 赵品懿 +2 位作者 甘升隆 沈学军 万琴 《电子科技大学学报》 北大核心 2025年第2期221-232,共12页
针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的... 针对小目标检测中卷积操作导致检测特征缺失和不同尺度语义隔阂的问题,提出一种基于动态自适应通道注意力特征融合的小目标检测方法。1)提出一种多尺度三角动态颈(Tri-Neck)网络结构,用于融合多尺度特征语义隔阂及弥补小目标特征缺失的问题。2)提出一种分组批量动态自适应通道注意力模块,增强弱语义小目标特征同时抑制无用信息,且在动态自适应通道注意力模块中设计新的激活函数和交并比损失函数,提升通道注意力表征能力。3)采用ResNet50作为骨干网络依次连接特征金字塔网络和Tri-Neck网络。实验结果表明,该方法在Pascal Voc 2007、Pascal Voc 2012上比YOLOv8算法mAP分别提升5.3%和6.2%,在MS COCO 2017数据集上AP和AP_S分别提升1.6%和2%,在SODA-D数据集上比YOLOv8算法AP提升0.9%。 展开更多
关键词 小目标检测 多尺度融合特征 特征金字塔 动态通道注意力 交并比损失函数
在线阅读 下载PDF
融合时空注意力机制的多尺度卷积车辆轨迹预测 被引量:1
9
作者 闫建红 刘芝妍 王震 《计算机工程》 北大核心 2025年第8期406-414,共9页
车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上... 车辆轨迹预测是自动驾驶的重要环节,提升车辆轨迹预测的可靠性和准确性对自动驾驶安全性有很大帮助。道路上车辆行驶受交通环境影响,考虑相邻车辆运动和相对空间位置等交通环境因素,在长短期记忆(LSTM)神经网络编码器-解码器模型基础上引入时空注意力机制,通过时间注意力层关注目标车辆和相邻车辆的历史轨迹,空间注意力层关注车辆的相对空间位置。为了增强特征提取程度和实现更全面的特征融合,使用多尺度卷积社交池增大感受野,融合多尺度特征,并提出基于LSTM编码器-解码器架构融合多尺度卷积社交池和时空注意力机制的车辆轨迹预测模型MCS-STA-LSTM。通过学习车辆运动相互依赖关系,以达到获得目标车辆未来轨迹基于机动类别的多模态预测分布的目的。在公开数据集NGSIM上进行训练、验证和测试,实验结果表明,相较于其他轨迹预测模型,该方法在3 s内的均方根误差平均降低了9.35%,5 s内均方根误差平均降低了5.53%,提高了轨迹预测准确性,在中短期预测上更具有优势。 展开更多
关键词 多尺度卷积社交池化 轨迹预测 长短期记忆神经网络 时空注意力机制 多尺度特征融合
在线阅读 下载PDF
基于注意力尺度序列融合的车辆行人检测算法
10
作者 李军 邹军 +1 位作者 陈翠 张世义 《重庆交通大学学报(自然科学版)》 北大核心 2025年第7期75-82,共8页
针对在路侧端车辆与行人检测中存在检测精度低,漏检率较高等问题,提出了一种注意力尺度序列融合的车辆行人检测算法YOLOv8-APC。首先,在颈部网络中使用尺度序列融合模块SSFF与三特征编码器TFE,以增强对多尺度信息的提取与融合,同时引入... 针对在路侧端车辆与行人检测中存在检测精度低,漏检率较高等问题,提出了一种注意力尺度序列融合的车辆行人检测算法YOLOv8-APC。首先,在颈部网络中使用尺度序列融合模块SSFF与三特征编码器TFE,以增强对多尺度信息的提取与融合,同时引入通道与位置注意力机制CPAM提高检测精度。然后,在改进后的网络结构基础上增加P2检测层,提高对小目标的检测能力,降低漏检率。最后,在主干网络中应用C2f_GhostDynamicConv(C2f_GDC)模块,有效降低模型的复杂度。为验证算法的有效性,在重庆科学谷示范区路侧端数据集Vapddsits上进行验证,实验结果表明:YOLOv8-APC的mAP50值与召回率较原模型提升了11.1%、11.9%;参数量与模型体积分别仅有1.85 M、4.1 MB,分别较原模型下降了38.3%、34.9%,其对远距离小目标以及遮挡目标能够实现更为准确的检测,且不会占用过多的内存资源,为路侧端车辆行人检测提供了一种解决方案。 展开更多
关键词 交通运输工程 YOLOv8 车辆与行人 特征提取 注意力机制 尺度序列融合
在线阅读 下载PDF
基于自适应特征融合金字塔与注意力机制的输电线路绝缘子缺陷检测方法
11
作者 翟永杰 翟邦朝 +3 位作者 胡哲东 杨珂 王乾铭 赵晓瑜 《图学学报》 北大核心 2025年第5期950-959,共10页
针对输电线路绝缘子缺陷样本中存在的复杂背景干扰及缺陷区域尺度不一问题,提出了一种基于自适应融合特征金字塔与注意力机制的输电线路绝缘子缺陷检测方法。首先,利用自适应融合模块(AF)来处理不同尺度的特征信息,并将其集成到特征金... 针对输电线路绝缘子缺陷样本中存在的复杂背景干扰及缺陷区域尺度不一问题,提出了一种基于自适应融合特征金字塔与注意力机制的输电线路绝缘子缺陷检测方法。首先,利用自适应融合模块(AF)来处理不同尺度的特征信息,并将其集成到特征金字塔网络之中,以缓解绝缘子航拍图像中存在的缺陷区域尺度不一问题。然后,基于注意力机制的缺陷特征细化模块(DFRM),通过增大感受野以及捕获缺陷区域的上下文特征来应对复杂背景噪声所带来的干扰。最后,将改进后的算法应用到真实输电线路绝缘子缺陷数据集进行实验。实验结果表明,该方法在绝缘子缺陷检测任务中优于其他方法,相较于基线模型准确率提升了5.7%,为电网智能巡检提供了一种有效方案。 展开更多
关键词 绝缘子缺陷 特征融合 注意力机制 目标检测 多尺度特征
在线阅读 下载PDF
多尺度融合增强与注意力机制结合的图像语义分割
12
作者 刘书刚 杜昊东 王洪涛 《计算机应用与软件》 北大核心 2025年第6期225-233,278,共10页
针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特... 针对当前图像语义分割中分割效率不高与分割边界不连续问题,提出一种多尺度融合增强与注意力机制结合的语义分割算法。该算法对原有DeepLabv3+网络结构进行改进,在编码器部分提出一种特征提取增强网络结构,充分利用相邻层各个尺度的特征信息进行融合,在解码器末端使用改进的轻量化卷积注意力模块,使得对于物体边界分割更加充分。通过在Pascal VOC2007和Cityscapes数据集上进行实验验证,结果表明该方法较原有网络的精确度有显著的提高。 展开更多
关键词 语义分割 特征融合增强 注意力模块 编码器 上采样
在线阅读 下载PDF
基于注意力机制和多尺度融合的人群计数网络
13
作者 栾方军 龚琪 袁帅 《计算机工程》 北大核心 2025年第3期352-361,共10页
为了应对人群图像中尺度变化和背景干扰的问题,提出一种人群计数网络模型,旨在充分利用多尺度信息并降低背景噪声的影响。首先采用ConvNeXt作为主干网络,用于提取特征。其次为了有效融合不同层次的特征,提出多层次特征融合模块(MFFM),... 为了应对人群图像中尺度变化和背景干扰的问题,提出一种人群计数网络模型,旨在充分利用多尺度信息并降低背景噪声的影响。首先采用ConvNeXt作为主干网络,用于提取特征。其次为了有效融合不同层次的特征,提出多层次特征融合模块(MFFM),将主干网络中不同层次的特征进行跨尺度融合,融合后的特征包含了不同尺度的语义信息,可以更好地适应人群计数任务中的尺度变化问题。接着为了更好地解决人群计数中存在的挑战,设计一个多尺度注意力模块(MSAM),根据不同感受野的分支提取不同尺度的特征,利用选择性Kernel通道注意力(SKCA)缓解多列结构存在的特征相似问题,并将模块生成的注意力图反馈到对应的尺度特征中,以抑制背景的干扰。网络模型在ShanghaiTechA数据集中的平均绝对误差(MAE)和均方根误差(RMSE)分别达到了56.1和93.9;在ShanghaiTechB数据集中的MAE和RMSE分别达到了6.1和10.3;在UCF_CC_50数据集中的MAE和RMSE分别达到了174.9和252.7;在Mall数据集中的MAE和RMSE分别达到了1.42和1.85。在公开数据集上的实验结果表明,提出的网络模型与现有代表性的人群计数方法相比,在提升人群计数任务的准确性和鲁棒性方面均取得了明显进展。 展开更多
关键词 人群计数 多尺度特征融合 注意力机制 神经网络 密度图
在线阅读 下载PDF
基于多尺度特征融合和注意力机制的辣椒病害识别模型 被引量:5
14
作者 尚俊平 张冬阳 +2 位作者 席磊 刘合兵 苏楠 《河南农业大学学报》 CAS CSCD 北大核心 2024年第6期1021-1033,共13页
【目的】设计MobileNet with large convolution Unit(Mobile-LU)模型,解决由于辣椒病害种类复杂和类间差异不明显而造成的病害识别困难、准确率低等问题。【方法】重新构建MobileNetV3的特征提取层,在并行分支单元结构中采用不同尺度... 【目的】设计MobileNet with large convolution Unit(Mobile-LU)模型,解决由于辣椒病害种类复杂和类间差异不明显而造成的病害识别困难、准确率低等问题。【方法】重新构建MobileNetV3的特征提取层,在并行分支单元结构中采用不同尺度的分离卷积,增强模型对辣椒病害尺寸差异特征的表达能力;引入Squeeze-and-Excitation(SE)注意力机制,加强模型对病害相关的特征的学习,提高病害识别准确率;同时使用Leaky ReLU激活函数,在负值区域引入小的斜率,避免网络神经元死亡问题;调整输出层节点个数,更好适应辣椒病害分类任务。【结果】Mobile-LU模型的识别准确率达到98.2%,相较于MobilenetV3-small、ResNet34、VGG16、Alexnet、Swin Transformer、MobileVIT等模型分别高出8.9、7.3、4.4、20.4、6.0、8.3个百分点,且Mobile-LU模型在精确率、召回率、特异度以及F1分数等关键性能指标上也均有优势。【结论】Mobile-LU模型对辣椒病害的识别性能更优,能更好满足辣椒病害识别任务。 展开更多
关键词 辣椒病害 图像分类 SE注意力机制 深度可分离卷积 多尺度特征融合
在线阅读 下载PDF
基于多尺度注意力特征融合的场景文本检测 被引量:2
15
作者 厍向阳 刘哲 董立红 《计算机工程与应用》 CSCD 北大核心 2024年第1期198-206,共9页
针对目前文本检测中小尺度文本和长文本检测精度低的问题,提出了一种基于多尺度注意力特征融合的场景文本检测算法。该方法以Mask R-CNN为基线模型,引入Swin_Transformer作为骨干网络提取底层特征。在特征金字塔(feature pyramid networ... 针对目前文本检测中小尺度文本和长文本检测精度低的问题,提出了一种基于多尺度注意力特征融合的场景文本检测算法。该方法以Mask R-CNN为基线模型,引入Swin_Transformer作为骨干网络提取底层特征。在特征金字塔(feature pyramid networks,FPN)中,通过将多尺度注意力热图与底层特征通过横向连接相融合,使检测器的不同层级专注于特定尺度的目标,并利用相邻层注意力热图之间的关系实现了FPN结构中的纵向特征共享,避免了不同层之间梯度计算的不一致性问题。实验结果表明:在ICDAR2015数据集上,该方法的准确率、召回率和F值分别达到了88.3%、83.07%和85.61%,在CTW1500和Total-Text弯曲文本数据集上相较现有方法均有良好表现。 展开更多
关键词 场景文本检测 Mask R-CNN Swin Transformer 注意力机制 多尺度特征融合
在线阅读 下载PDF
注意力机制和多尺度特征融合的细粒度图像分类 被引量:2
16
作者 李云红 郭越 +4 位作者 谢蓉蓉 张蕾涛 苏雪平 李丽敏 陈锦妮 《重庆理工大学学报(自然科学)》 北大核心 2024年第12期155-164,共10页
针对细粒度图像分类易受背景干扰、关键区域定位不准确以及模型参数量大的问题,提出了一种注意力机制和多尺度特征融合的分类网络(networks of combine attention mechanisms and multi-scale features,AM-Net)。首先,以YOLOv7网络为基... 针对细粒度图像分类易受背景干扰、关键区域定位不准确以及模型参数量大的问题,提出了一种注意力机制和多尺度特征融合的分类网络(networks of combine attention mechanisms and multi-scale features,AM-Net)。首先,以YOLOv7网络为基础,使用Ghost BottleNeck模块重新搭建轻量级主干网络,并使用GhostConv替换颈部网络中的Conv,实现模型的轻量化。其次,引入无参的SimAM注意力机制,通过考虑空间和通道维度的相关性推断特征图的三维注意力权重,表征局部显著特征,抑制无用特征,提高目标区域信息的有效性。最后,构建可特征选择的金字塔池化模块(fast spatial pyramid pooling with feature selection and convolutions,SPPFC),帮助网络模型更好地捕捉和处理目标的多尺度特征,提高模型的感知能力。通过实验可知,AM-Net在Stanford Dogs数据集上的准确率、精确率、召回率和F 1分数分别达到88.9%、83.6%、85.7%和84.6%,模型参数量为26.53 MB,每秒帧率达到89.3帧,在Stanford Cars数据集上的准确率、精确率和召回率分别达到95.2%、93.7%和94.9%。实验结果表明,AM-Net可以在轻量化网络的同时提高细粒度图像的分类精度,相比于其他网络模型性能有较大提升。 展开更多
关键词 人工智能 细粒度分类 特征提取 注意力机制 多尺度特征融合
在线阅读 下载PDF
基于多尺度特征融合和注意力机制的矿区道路障碍检测 被引量:1
17
作者 李刚 杜亚波 +2 位作者 杨庆贺 毛梦影 贾冬平 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期87-98,共12页
为解决复杂露天矿区背景下的行车障碍检测问题,提出一种基于改进跨尺度特征融合的矿区道路障碍检测算法。首先,针对原始矿山数据集中小目标样本类别不平衡的问题,采用一种基于几何变换和加权泊松融合的数据增强方法扩大样本数量;其次,... 为解决复杂露天矿区背景下的行车障碍检测问题,提出一种基于改进跨尺度特征融合的矿区道路障碍检测算法。首先,针对原始矿山数据集中小目标样本类别不平衡的问题,采用一种基于几何变换和加权泊松融合的数据增强方法扩大样本数量;其次,在特征提取阶段提出更适用于障碍检测的跨阶段连接网络,以增大检测尺度,提高算法对小目标特征的学习能力;然后,在特征融合阶段提出基于3D无参注意力(SimAM)和去权重的双向特征融合金字塔网络(Bi-FPN),通过扩大预测特征图和特征感受野,提升多尺度检测性能;最后,针对训练中样本不均衡和障碍物边界框定位不精准问题,引入质量焦点损失函数(QFL)和可扩展的交并比损失函数(SIoU),将分类得分与位置的质量预测结合,提高对密集遮挡目标的定位精度。结果表明:改进方法能有效识别复杂背景下露天矿区非结构化道路障碍物,在实际应用中,检测精度达到91.88%,检测速度达到68.7帧/s,相较于主流检测方法有着更好的小目标和多尺度检测性能,可满足露天矿区无人矿卡行进中的障碍安全检测要求。 展开更多
关键词 多尺度 特征融合 注意力机制 矿区道路 障碍检测 数据增强
在线阅读 下载PDF
基于多尺度注意力特征融合的恶意URL检测研究
18
作者 马栋林 陈伟杰 +1 位作者 赵宏 宋佳佳 《电子测量技术》 北大核心 2024年第20期15-23,共9页
针对当前恶意URL检测模型在处理复杂结构和多样化字符组合的URL时,存在特征提取单一和检测精度不高的问题,提出了一种基于多尺度注意力特征融合的恶意URL检测模型。首先,采用Character Embeddings和DistilBERT方法分别对字符和单词进行... 针对当前恶意URL检测模型在处理复杂结构和多样化字符组合的URL时,存在特征提取单一和检测精度不高的问题,提出了一种基于多尺度注意力特征融合的恶意URL检测模型。首先,采用Character Embeddings和DistilBERT方法分别对字符和单词进行编码,以捕获URL字符串中字符级和词级特征表示。其次,通过改进卷积神经网络(CNN)提取不同尺度的字符结构特征和词级语义特征,并结合双向长短期记忆网络(BiLSTM)进一步提取深层次序列特征。此外,为了实现字符级与词级多尺度特征的动态融合,创新性地引入注意力特征融合模块(AFF),有效降低信息冗余并提升对长距离序列特征的提取能力。实验结果表明,所提模型与其他基准模型相比,准确率提升了0.32%~4.7%,F1分数提升了0.46%~5.5%,并在ISCX-URL2016等数据集上也达到了较好的测效果。 展开更多
关键词 恶意URL检测 多尺度特征 卷积神经网络 双向长短时记忆网络 注意力特征融合
在线阅读 下载PDF
多尺度特征融合注意力新冠肺炎病灶分割网络 被引量:2
19
作者 林洁沁 黄新 《激光杂志》 CAS 北大核心 2024年第3期168-174,共7页
新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Atte... 新冠病毒传染性极强,尽早的诊断和治疗是减少疫情造成损失的关键因素。为辅助医生诊断新冠病情,高效、准确地从肺部CT切片中分割新冠病灶,提出了一种改进的编码器-解码器深度神经网络———多尺度融合注意力网络MSANet(Multi-scale Attention Network),以图像分割效果较为出色的U-Net网络为基础,通过全局池化层和设置空洞卷积的采样率,增大网络感受野,捕获多尺度信息,实现对大目标的有效分割;使用通道注意力与空间注意力,在空间维度上建模,有效提取图像深层特征。测试结果表明,改进后的算法与U-Net网络相比,分割的平均交并比提升了1.46%,类别平均像素准确率提升了0.8%,准确率提升了1.17%。 展开更多
关键词 图像处理 特征提取 卷积块注意力模块 空洞空间卷积池化金字塔 U-Net结构 多尺度特征融合
在线阅读 下载PDF
融合监督注意力模块和跨阶段特征融合的图像修复改进网络 被引量:2
20
作者 黄巧玲 郑伯川 +1 位作者 丁梓成 吴泽东 《计算机应用》 CSCD 北大核心 2024年第2期572-579,共8页
非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两... 非规则缺失区域的图像修复技术用途广泛但具有挑战性。针对现有修复方法对高分辨率图像可能会产生伪影、扭曲结构和模糊纹理的问题,提出一种融合监督注意力模块(SAM)和跨阶段特征融合(CSFF)的图像修复改进网络(Gconv_CS)。在Gconv的两阶段网络模型上,引入了SAM与CSFF模块。SAM通过提供真实图像监督信号,监督上阶段输出特征,确保传入下阶段特征信息的有效性。CSFF将上阶段编码器-解码器的特征融合后送入下阶段的编码器,以弥补上阶段修复中特征信息的损失。实验结果表明,在缺失区域占比为1%~10%时,相较于基线模型Gconv,Gconv_CS在CelebA-HQ数据集上峰值信噪比(PSNR)和结构相似性指数(SSIM)分别提高了1.5%和0.5%,Fréchet起始距离(FID)和L1损失分别降低了21.8%、14.8%;在Place2数据集上,前2个指标分别提高了26.7%和0.8%,后2个指标分别降低了7.9%、37.9%。将Gconv_CS用于去除大熊猫面部遮挡物时,取得了较好的修复视觉效果。 展开更多
关键词 图像修复 两阶段网络 跨阶段特征融合 监督注意力模块 门控卷积
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部