期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于多尺度局部特征编码与多通道特征融合的图像场景分类 被引量:9
1
作者 秦芳 顾广华 《燕山大学学报》 CAS 北大核心 2019年第4期357-363,共7页
场景分类在图像理解和计算机视觉中是一个挑战性问题。有效的图像表示在场景分类任务中至关重要。CNN特征在场景分类任务中表现相对突出,但仍有缺陷,其主要表征图像的全局特征,忽略了局部信息,且缺乏几何不变性。本文通过编码多尺度局... 场景分类在图像理解和计算机视觉中是一个挑战性问题。有效的图像表示在场景分类任务中至关重要。CNN特征在场景分类任务中表现相对突出,但仍有缺陷,其主要表征图像的全局特征,忽略了局部信息,且缺乏几何不变性。本文通过编码多尺度局部图像块的中层CNN特征,获得图像的局部信息,并将编码特征与原始图像的全局CNN特征进行多通道融合来描述场景图像,获得更高效的图像表示,以实现更好的分类判别。本文在两个常用的场景数据集上进行实验评估,结果表明,该方法在场景分类任务中取得了令人满意的效果。 展开更多
关键词 场景分类 CNN特征 多尺度特征编码 多通道特征融合
在线阅读 下载PDF
基于单目RGB图像的三维手部姿态估计方法
2
作者 杨冰 徐楚阳 +1 位作者 姚金良 向学勤 《浙江大学学报(工学版)》 北大核心 2025年第1期18-26,共9页
现有的三维手部姿态估计方法大多基于Transformer技术,未充分利用高分辨率下的局部空间信息,为此提出基于改进FastMETRO的三维手部姿态估计方法.引入可变形注意力机制,使得编码器的设计不再受限于图像特征序列长度;引入交错更新多尺度... 现有的三维手部姿态估计方法大多基于Transformer技术,未充分利用高分辨率下的局部空间信息,为此提出基于改进FastMETRO的三维手部姿态估计方法.引入可变形注意力机制,使得编码器的设计不再受限于图像特征序列长度;引入交错更新多尺度特征编码器来融合多尺度特征,强化生成手部姿态;引入图卷积残差模块来挖掘网格顶点间的显式语义联系.为了验证所提方法的有效性,在数据集FreiHAND、HO3D V2和HO3D V3上开展训练及评估实验.结果表明,所提方法的回归精度优于现有先进方法,在FreiHAND、HO3D V2、HO3D V3上的普鲁克对齐-平均关节点误差分别为5.8、10.0、10.5 mm. 展开更多
关键词 三维手部姿态估计 TRANSFORMER 可变形注意力机制 交错更新多尺度特征编码 神经网络
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部