锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种...锂离子电池健康状态(state of health,SOH)估计对确保能量存储系统的可靠性和安全性至关重要。然而,现有SOH估计方法在单一特征提取和固定充放电条件依赖方面存在局限性,难以适应多变的实际工作环境。为解决这一问题,本工作提出了一种基于弛豫电压的并行多尺度特征融合卷积模型(multi-scale feature fusion convolution model,MSFFCM)结合极端梯度提升树(XGBoost)的SOH估计方法。MSFFCM通过多层堆叠卷积模块提取弛豫电压数据的深层特征,同时利用并行多尺度注意力机制增强了多尺度特征的捕捉能力,并将这些特征与统计特征进行融合,以提升模型的特征提取和融合能力。针对XGBoost模型,本工作应用贝叶斯优化算法进行参数调优,从而在多源融合特征基础上实现高精度SOH估计。实验验证基于两种商用18650型号电池的多温度和多充放电策略数据集,结果表明该方法的均方根误差(RMSE)和平均绝对误差(MAE)均小于0.5%,明显优于传统方法。本工作为锂电池健康管理提供了一种不依赖特定充放电条件的有效估计工具,有望在复杂的实际应用中发挥重要作用。展开更多
为了解决施工场景下安全帽佩戴检测时,由于人员密集、遮挡和复杂背景等原因造成的小目标漏检和错检的问题,提出一种基于YOLOv8n的双重注意力机制的跨层多尺度安全帽佩戴检测算法。首先,设计微小目标检测头,以提高模型对小目标的检测能力...为了解决施工场景下安全帽佩戴检测时,由于人员密集、遮挡和复杂背景等原因造成的小目标漏检和错检的问题,提出一种基于YOLOv8n的双重注意力机制的跨层多尺度安全帽佩戴检测算法。首先,设计微小目标检测头,以提高模型对小目标的检测能力;其次,在特征提取网络中嵌入双重注意力机制,从而更加关注复杂场景下目标信息的特征捕获;然后,将特征融合网络替换成重参数化泛化特征金字塔网络(RepGFPN)改进后的跨层多尺度特征融合结构S-GFPN(Selective layer Generalized Feature Pyramid Network),以实现小目标特征层信息和其他特征层的多尺度融合,并建立长期的依赖关系,从而抑制背景信息的干扰;最后,采用MPDIOU(Intersection Over Union with Minimum Point Distance)损失函数来解决尺度变化不敏感的问题。在公开数据集GDUT-HWD上的实验结果表明,改进后的模型比YOLOv8n的mAP@0.5提升了3.4个百分点,对蓝色、黄色、白色和红色安全帽的检测精度分别提升了2.0、1.1、4.6和9.1个百分点,在密集、遮挡、小目标、反光和黑暗这5类复杂场景下的可视化检测效果也优于YOLOv8n,为实际施工场景中安全帽佩戴检测提供了一种有效方法。展开更多
文摘为了解决施工场景下安全帽佩戴检测时,由于人员密集、遮挡和复杂背景等原因造成的小目标漏检和错检的问题,提出一种基于YOLOv8n的双重注意力机制的跨层多尺度安全帽佩戴检测算法。首先,设计微小目标检测头,以提高模型对小目标的检测能力;其次,在特征提取网络中嵌入双重注意力机制,从而更加关注复杂场景下目标信息的特征捕获;然后,将特征融合网络替换成重参数化泛化特征金字塔网络(RepGFPN)改进后的跨层多尺度特征融合结构S-GFPN(Selective layer Generalized Feature Pyramid Network),以实现小目标特征层信息和其他特征层的多尺度融合,并建立长期的依赖关系,从而抑制背景信息的干扰;最后,采用MPDIOU(Intersection Over Union with Minimum Point Distance)损失函数来解决尺度变化不敏感的问题。在公开数据集GDUT-HWD上的实验结果表明,改进后的模型比YOLOv8n的mAP@0.5提升了3.4个百分点,对蓝色、黄色、白色和红色安全帽的检测精度分别提升了2.0、1.1、4.6和9.1个百分点,在密集、遮挡、小目标、反光和黑暗这5类复杂场景下的可视化检测效果也优于YOLOv8n,为实际施工场景中安全帽佩戴检测提供了一种有效方法。