期刊文献+
共找到679篇文章
< 1 2 34 >
每页显示 20 50 100
基于多尺度深度可分离卷积的低照度图像增强算法 被引量:13
1
作者 陈清江 顾媛 《计算机工程与科学》 CSCD 北大核心 2023年第10期1830-1837,共8页
为解决低照度图像颜色失真、对比度低以及现有增强算法存在的细节丢失严重、参数过多等问题,提出基于多尺度深度可分离卷积的低照度图像增强算法。首先,设计多尺度混合空洞卷积模块,在扩大感受野的同时解决网格效应;其次,设计多尺度特... 为解决低照度图像颜色失真、对比度低以及现有增强算法存在的细节丢失严重、参数过多等问题,提出基于多尺度深度可分离卷积的低照度图像增强算法。首先,设计多尺度混合空洞卷积模块,在扩大感受野的同时解决网格效应;其次,设计多尺度特征提取模块,提取不同尺度的特征信息;最后,对不同尺寸的特征图使用2种模块,将低层空间信息与高层语义信息充分融合,获得最终输出。用深度可分离卷积代替标准卷积可大大减少网络参数量与计算量。实验结果表明,所提算法能有效地提高图像的亮度和对比度,减少模型参数量,且图像纹理细节及色彩恢复较好。 展开更多
关键词 低照度图像增强 深度可分离卷积 空洞卷积 多尺度 网格效应
在线阅读 下载PDF
基于Transformer与深度可分离卷积的轻量级遥感图像语义分割
2
作者 马飞 张森峰 +1 位作者 杨飞霞 徐光宪 《电光与控制》 北大核心 2025年第7期33-38,66,共7页
遥感图像语义分割在环境变化监测、汽车辅助驾驶等领域具有广泛的应用。遥感图像在语义对象层面表现出较大的类内变化和较小的类间差异,导致分割模型精度受限且耗费计算资源。为此提出了一种基于Transformer与深度可分离卷积的轻量级遥... 遥感图像语义分割在环境变化监测、汽车辅助驾驶等领域具有广泛的应用。遥感图像在语义对象层面表现出较大的类内变化和较小的类间差异,导致分割模型精度受限且耗费计算资源。为此提出了一种基于Transformer与深度可分离卷积的轻量级遥感图像语义分割方法。首先,引入权重自适应的多头自注意力,在全局范围内对远距离像素关联性建模,获取丰富的上下文信息;其次,构建堆叠的深度可分离卷积层,以低计算复杂度减少空间细节信息的丢失;此外利用线性注意力机制设计特征聚合模块,对全局情景信息与空间细节信息进行融合。经过在Vaihingen和Potsdam数据集上测试结果表明,所提方法的分割总体准确率分别高达92.6%和92.1%,GFLOPs仅为11.5,不仅有效提升了分割精度,而且大大降低了计算复杂度。 展开更多
关键词 遥感图像 语义分割 深度学习 深度可分离卷积 线性注意力机制
在线阅读 下载PDF
基于多尺度深度可分离ResNet的废弃家电回收图像分类模型
3
作者 雷帅 仇明鑫 +1 位作者 柳先辉 张颖瑶 《计算机科学》 北大核心 2025年第S1期377-383,共7页
针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特... 针对海量废弃家电回收图像数据在回收技术中难以有效利用的问题,提出了一种基于ResNet和多尺度卷积的废弃家电回收图像分类模型(Multi-scale and Efficient ResNet,ME-ResNet)。首先,基于残差结构设计了多尺度卷积模块以提升不同尺度特征信息提取能力,在此基础上基于ResNet设计了针对废弃家电回收图像分类问题的ME-ResNet模型;其次,通过用深度可分离卷积替换多尺度卷积中的部分卷积层,实现ME-ResNet模型轻量化;最后,通过与其他卷积神经网络的对比实验,对ME-ResNet及其轻量化模型的性能进行了验证。研究结果表明:相较于经典的卷积神经网络ResNet34,ME-ResNet及其轻量化模型均能有效提升识别准确度,针对构建的数据集,其最优准确率分别提升了1.2%和0.3%,宏精确率分别提升了1.7%和0.9%,宏召回率分别提升了1.3%和0.2%,宏F1分数分别提升了1.5%和0.5%。 展开更多
关键词 多尺度卷积 ME-ResNet模型 深度可分离卷积 图像分类 残差连接
在线阅读 下载PDF
基于深度可分离卷积残差模块的抓取检测算法
4
作者 平路静 马行 +1 位作者 穆春阳 姜谱照 《传感器与微系统》 北大核心 2025年第5期133-137,共5页
针对在移动设备和嵌入式设备等资源受限的环境中,机器人不易实时准确抓取物体的问题,提出一种基于深度可分离卷积残差模块的卷积神经网络(CNN)模型。该模型充分利用相机颜色和深度信息,以RGB-D图像作为网络输入,直接对逐个像素点完成抓... 针对在移动设备和嵌入式设备等资源受限的环境中,机器人不易实时准确抓取物体的问题,提出一种基于深度可分离卷积残差模块的卷积神经网络(CNN)模型。该模型充分利用相机颜色和深度信息,以RGB-D图像作为网络输入,直接对逐个像素点完成抓取预测。利用深度可分离卷积替代传统残差结构中的标准卷积层,构建出深度可分离卷积残差模块,在不降低网络性能的基础上减少模型参数,网络模型大小仅为2.3 MB。最后,在Cornell抓取数据集上进行实验,准确率达到97.7%,检测速度为58 fps。 展开更多
关键词 卷积神经网络 深度可分离卷积 残差网络 抓取检测
在线阅读 下载PDF
基于深度卷积和多层尺度特征融合的冠脉造影图像血管分割
5
作者 许洋 翟楠楠 +2 位作者 倪维臻 谭强 王金甲 《中国生物医学工程学报》 北大核心 2025年第1期34-42,共9页
冠状动脉造影是诊疗冠心病等心血管疾病的一种重要手段,快速而准确的血管分割对诊疗心血管疾病具有十分重要的意义。针对现有冠状动脉造影血管分割算法对细微血管的分割能力不强、分割血管的连通性较差、抗噪声及伪影能力弱等问题,本研... 冠状动脉造影是诊疗冠心病等心血管疾病的一种重要手段,快速而准确的血管分割对诊疗心血管疾病具有十分重要的意义。针对现有冠状动脉造影血管分割算法对细微血管的分割能力不强、分割血管的连通性较差、抗噪声及伪影能力弱等问题,本研究吸取了Transformer结构长距离依赖与跨域跳转连接的优点,分别采用上下文分层聚合和多尺度特征融合的方法,对U型分割网络进行改进,称HAM-UNet。首先,采取必要的图像预处理方法,对原有的冠脉造影图像进行一些特征强化,并扩大了实验数据;然后,将预处理好的图片以HAM-UNet的方法进行分割。编码器同时结合深度卷积与残差结构,可以高效的捕获全局特征并有效增强网络细节感知力,提升分割精度的同时提高分割连通性。解码器进行了多尺度的特征融合,并且加入上采样跳转连接,网络的全局感知得到提高,有效降低了无关信息的影响。所使用数据集来自于天津市医科大学总医院的221张图像和秦皇岛市第一医院的494张图像,在两个数据集上,HAM-UNet算法的准确率分别为0.983和0.998,IOU分别为0.857和0.908,Dice分数分别为0.842和0.883;综合分割性能比U-Net和Att-UNet等算法有较大提升。 展开更多
关键词 图像分割 冠脉造影图像分割 U-Net 深度卷积 多层尺度融合
在线阅读 下载PDF
融合通道-时间注意力和深度可分离卷积的欺骗语音检测
6
作者 冯嘉琪 王华朋 刘天赐 《科学技术与工程》 北大核心 2025年第22期9427-9435,共9页
自动说话人验证系统在应对日益逼真的深度伪造语音时,面临显著的欺骗攻击威胁。现有基于卷积神经网络的反欺骗模型在捕捉全局特征与应对未知类型语音伪造的泛化性能方面存在不足。为提升反欺骗检测效果,提出了一种融合通道-时间注意力... 自动说话人验证系统在应对日益逼真的深度伪造语音时,面临显著的欺骗攻击威胁。现有基于卷积神经网络的反欺骗模型在捕捉全局特征与应对未知类型语音伪造的泛化性能方面存在不足。为提升反欺骗检测效果,提出了一种融合通道-时间注意力机制与深度可分离卷积的网络模型CT-DSCNet。该模型在RawNet2基础上引入通道-时间注意力模块,增强对重要语音特征的关注,减少无关区域的干扰;同时采用深度可分离卷积残差块,优化计算效率与模型实时性。实验在AS-Vspoof2019、ASVspoof2021和FMFCC-A数据集上进行,结果显示CT-DSCNet在ASVspoof2019 LA测试集上的等错误率(equal error rate,EER)达到1.53%,较基线模型降低70.58%。在泛化能力方面相较其他模型也表现出色,在FMFCC-A评估集上的EER,较改进前模型相比提高了25.35%。实验验证了该方法在提升伪造语音检测性能和跨数据集适应性方面的有效性。 展开更多
关键词 深度伪造语音 注意力机制 深度可分离卷积 语音反欺骗
在线阅读 下载PDF
基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型 被引量:1
7
作者 陈锦妮 田谷丰 +4 位作者 李云红 朱耀麟 陈鑫 门玉乐 魏小双 《光谱学与光谱分析》 北大核心 2025年第3期678-684,共7页
羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一... 羊绒具有轻盈舒适、光滑柔软、稀释透气以及保暖好的特点,由于羊绒价格十分昂贵,因此市场上的羊绒产品质量良莠不齐。现有的显微镜法、DNA法、化学溶解法和基于图像的方法具有损坏样本、设备昂贵、主观性强等不足。近红外光谱技术是一种非破坏性、可进行建模操作的快速测量方法。针对传统的建模方法通常无法学习出通用的近红外光谱波段特征,导致泛化能力弱,且羊绒羊毛纤维的近红外光谱波段特征相似,难以区分的问题,本文提出一种基于双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型。采集了羊绒羊毛样品的近红外光谱波段数据共1170个进行验证,近红外光谱波段数据范围是1300~2500 nm。利用两个并行卷积神经网络来提取近红外光谱波段的特征,采用原始近红外光谱波段数据和降维近红外光谱波段数据同时输入的方式,并利用多尺度特征提取模块进一步提取中间具有贡献力的近红外光谱波段特征,利用路径交流模块用于两路近红外光谱波段特征的信息交流,最后利用类级别融合得到羊绒羊毛纤维预测结果。在实验过程中,将采集的80%近红外光谱波段数据用于模型训练,20%近红外光谱波段数据用于模型测试。模型测试集的平均预测准确率为94.45%,与传统算法中的随机森林、SVM、1D-CNN等算法相比较分别提升了7.33%、5.22%、2.96%,并进行消融实验对所提模型的结构进一步验证。实验结果表明,本文提出的双路多尺度卷积的近红外光谱羊绒羊毛纤维预测模型可实现羊绒羊毛纤维的快速无损预测,为近红外光谱羊绒羊毛纤维预测提供了新的思路。 展开更多
关键词 羊绒羊毛 近红外光谱 深度学习 双路多尺度卷积神经网络
在线阅读 下载PDF
基于多尺度融合神经网络的同频同调制单通道盲源分离算法
8
作者 付卫红 张鑫钰 刘乃安 《系统工程与电子技术》 北大核心 2025年第2期641-649,共9页
针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。... 针对单通道条件下同频同调制混合信号分离时存在的计算复杂度高、分离效果差等问题,提出一种基于时域卷积的多尺度融合递归卷积神经网络(recursive convolutional neural network, RCNN),采用编码、分离、解码结构实现单通道盲源分离。首先,编码模块提取出混合通信信号的编码特征;然后,分离模块采用不同尺度大小的卷积块以进一步提取信号的特征信息,再利用1×1卷积块捕获信号的局部和全局信息,估计出每个源信号的掩码;最后,解码模块利用掩码与混合信号的编码特征恢复源信号波形。仿真结果表明,所提多尺度融合RCNN不仅可以分离出仅有少量参数区别的混合通信信号,而且相较于U型网络(U-Net)降低了约62%的参数量和41%的计算量,同时网络也具有较强的泛化能力,可以高效面对复杂通信环境的挑战。 展开更多
关键词 单通道盲源分离 深度学习 同频同调制信号分离 多尺度融合递归卷积神经网络 通信信号处理
在线阅读 下载PDF
基于动态深度可分离卷积神经网络的管道泄漏孔径识别
9
作者 王秀芳 刘源 李月明 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第5期183-189,共7页
针对传统模型为提高管道泄漏检测的精度而导致的模型结构复杂度、参数量和计算量大的问题,提出一种基于动态深度可分离卷积神经网络的管道泄漏孔径识别方法;动态卷积层将提取到的泄漏信号特征经过通道注意力权值计算和动态权值融合,通... 针对传统模型为提高管道泄漏检测的精度而导致的模型结构复杂度、参数量和计算量大的问题,提出一种基于动态深度可分离卷积神经网络的管道泄漏孔径识别方法;动态卷积层将提取到的泄漏信号特征经过通道注意力权值计算和动态权值融合,通过动态深度可分离卷积层获得更强的特征表达能力,利用全局平均池化层降低网络模型参数,通过全连接层识别管道泄漏孔径。结果表明:新方法具有较高的识别精度,克服了传统模型资源开销大、功耗高的问题,降低了模型的训练时间,提升了管道泄漏孔径的识别速度,可用于工业中的管道泄漏程度监测。 展开更多
关键词 泄漏孔径识别 动态深度可分离卷积 轻量化网络 动态卷积
在线阅读 下载PDF
基于多域信息融合与深度分离卷积的轴承故障诊断网络模型 被引量:4
10
作者 王同 许昕 潘宏侠 《机电工程》 北大核心 2024年第1期22-32,共11页
针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了... 针对传统卷积神经网络(CNN)对滚动轴承振动信号的故障识别准确率不高这一问题,提出了一种基于多域信息融合结合深度分离卷积(MDIDSC)的轴承故障诊断方法。首先,利用自适应噪声的完全集合经验模态分解(CEEMDAN)算法对轴承振动信号进行了分解;然后,利用分解出的本征模态函数(IMF)的各个分量构建了多空间状态矩阵,并将该多空间状态矩阵输入该深度分离卷积模型中,进行了卷积训练;同时,在该深度分离卷积模型中添加了残差结构,对数据特征进行了复利用,并对卷积核进行了深度分离,解决了深度模型的网络退化问题;最后,提出了一种空间特征提取方法,对模型参数进行了修剪,采用一种自适应学习率退火方法进行了梯度优化,以避免模型陷入局部最优。研究结果表明:通过对多个轴承故障数据集进行对比分析可知,MDIDSC在轴承故障诊断方面的准确率和稳定性明显优于其他方法,MDIDSC的最高测试准确率为100%,平均测试准确率为99.07%;同时,在测试集中的最大损失和平均损失分别为0.1345和0.0841;该结果表明MDIDSC在轴承故障诊断方面具有一定的优越性。 展开更多
关键词 深度分离卷积 信息融合 参数修剪 残差网络 卷积神经网络 自适应噪声的完全集合经验模态分解 本征模态函数 多域信息融合结合深度分离卷积
在线阅读 下载PDF
基于深度可分离卷积和残差注意力模块的车道线检测方法 被引量:3
11
作者 崔明义 冯治国 +2 位作者 代建琴 赵雪峰 袁森 《激光杂志》 CAS 北大核心 2024年第4期81-87,共7页
针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈... 针对全天候条件下道路车道线视觉检测技术存在的算法结构复杂、参数数量较多等问题,提出一种基于深度可分离卷积和残差注意力模块的车道线检测方法,建立了LPINet网络模型。利用深度可分离卷积减小输入图像尺寸,设计三种不同结构的瓶颈残差单元降低网络参数数量,引入ECANet注意力机制增加重要特征通道权重,提升车道线检测精度。在Tusimple数据集和GZUCDS自建数据集上的实验结果表明:在晴天场景下,LPINet网络车道线检测精度可达96.62%,且模型参数量降至1.64 MB,实现了轻量化设计;在雾天、雨天、夜晚和隧道复杂场景中进行了探索性研究,车道线检测精度达到93.86%,证明了方法的有效性。 展开更多
关键词 车道线检测 深度学习 残差网络 深度可分离卷积 注意力机制
在线阅读 下载PDF
基于深度可分离卷积神经网络的水声目标分类研究及FPGA实现 被引量:1
12
作者 张天帅 刘金涛 王良 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第8期152-165,共14页
针对传统声纳处理器算力受限,能效比低,难以支撑水声目标识别实时推理的问题,本文基于异构SoC平台设计了面向被动声纳水下目标实时计算处理系统。该系统具有较低资源开销和较小分类精度损失等优点,是一种低时延、高能效比的硬件加速器... 针对传统声纳处理器算力受限,能效比低,难以支撑水声目标识别实时推理的问题,本文基于异构SoC平台设计了面向被动声纳水下目标实时计算处理系统。该系统具有较低资源开销和较小分类精度损失等优点,是一种低时延、高能效比的硬件加速器解决方案。本文以MobileNetV1网络模型为基础并对其进行结构优化,在现场可编程门阵列(Field programmable gate array,FPGA)上通过并行流水线的加速结构实现它的前向推理过程,并对其权值参数进行二值化的处理,以达到减少存储量和计算量的同时加快其推理速度的目的。同时,根据在输入通道维度以及输出图像高度上分块并行的优化思想,设计了深度可分离卷积的流水优化策略,采用并行流水的结构极大减少了前向推理的时间。实验表明,在利用出海实际采集得到的水声数据集上,本文实现的系统识别精度为88.5%,在的分辨率的图像上,时间延迟达到4.23 ms。对比CPU速度提升了70.68倍,是GPU速度的68%。能效比分别为CPU的0.08%,GPU的2.12%。本文为神经网络在硬件资源有限以及功耗存在限制的轻量型移动端或者边缘设备上的应用与部署,以及对促进融合水下勘探网络的建设和水下信息的快速获取提供了设计思路。 展开更多
关键词 水声目标分类 深度可分离卷积 定点量化 FPGA
在线阅读 下载PDF
基于深度卷积自编码器和多尺度残差收缩网络的滚动轴承寿命状态识别 被引量:1
13
作者 潘雪娇 董绍江 +2 位作者 周存芳 肖家丰 宋锴 《重庆交通大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期124-132,共9页
针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷... 针对滚动轴承早期故障识别困难、退化性能难以准确评估的问题,提出了基于深度卷积自编码器(DCAE)和多尺度残差收缩网络(MSRSN)的滚动轴承寿命状态识别方法。首先,为获得清晰的故障特征频率及倍频,将原始数据样本转换为包络谱输入深度卷积自编码器中,实现轴承寿命状态特征的自动提取与表达,并基于多维尺度分析(MDS)算法约简寿命状态特征获得低维特征,然后计算低维特征空间内样本间的欧几里得距离(ED),即为轴承性能衰退评估指标;其次,为全面提取轴承性能衰退特征,提出了改进的多尺度残差收缩网络识别模型,并开发了ReLU与DropBlock正则化相结合的新激活策略增强模型的抗噪性;最后,将所提方法及对比方法应用于轴承全寿命实验数据。实验结果表明:笔者提出的性能衰退评估指标能够精准地识别轴承性能退化起始点以及刻画轴承的退化趋势,所提出的改进的多尺度残差收缩网络识别模型在S SNR=-4~6 dB环境中平均识别正确率为91.75%,能够准确识别轴承寿命状态,验证了方法的实用性以及有效性。 展开更多
关键词 车辆与机电工程 深度卷积自编码器 性能衰退指标 多尺度残差收缩网络 寿命状态识别
在线阅读 下载PDF
基于逐尺度卷积的OFDM信道估计算法
14
作者 黄振国 钱蓉蓉 +2 位作者 任文平 朱雨佳 陈锰 《计算机工程与设计》 北大核心 2025年第1期67-73,共7页
针对快衰落信道环境下的无线通信正交频分复用系统中信道估计算法估计难度大、复杂度高等问题,提出一种轻量级的逐尺度卷积信道估计网络(scale-wise convolution channel estimation network,SCCENet)。对输入的信道状态信息矩阵下采样... 针对快衰落信道环境下的无线通信正交频分复用系统中信道估计算法估计难度大、复杂度高等问题,提出一种轻量级的逐尺度卷积信道估计网络(scale-wise convolution channel estimation network,SCCENet)。对输入的信道状态信息矩阵下采样,构建多尺度特征金字塔,通过构建的逐尺度卷积部分以网络权重共享的方式对信道状态信息矩阵构成的多尺度特征金字塔进行不同尺度的特征融合,在不增加网络参数情况下增大感受野。仿真结果表明,该算法估计性能优于最小二乘算法,能以较低的估计复杂度取得相较于其它深度学习信道估计算法更低的估计误差。 展开更多
关键词 信道估计 OFDM系统 快衰落 深度学习 尺度卷积 无线通信 轻量级网络 特征融合
在线阅读 下载PDF
一种引入多尺度卷积滤波器的高光谱特征提取方法
15
作者 黄飞庆 郭宝峰 +3 位作者 尤靖云 吴治龙 王奕炜 王庆林 《红外技术》 北大核心 2025年第6期712-721,共10页
针对循环神经网络存在的梯度消失现象和传统卷积神经网络感受野的限制问题,本文提出了一种引入多尺度卷积滤波器的光谱-空间特征提取方法。该方法包括光谱特征提取和空间特征提取两个部分。在光谱特征提取部分,将双向长短时记忆网络与... 针对循环神经网络存在的梯度消失现象和传统卷积神经网络感受野的限制问题,本文提出了一种引入多尺度卷积滤波器的光谱-空间特征提取方法。该方法包括光谱特征提取和空间特征提取两个部分。在光谱特征提取部分,将双向长短时记忆网络与波段分组策略相结合,在一定程度上缓解了因网络太深导致的梯度消失问题。在空间特征提取部分,在卷积神经网络的基础上引入多尺度卷积滤波器,使网络能够同时捕捉到细节特征和全局结构。同时将浅层特征与深层特征融合,从而提高分类性能。在两个数据集上的实验结果表明,该方法能够有效提高分类准确度。 展开更多
关键词 高光谱图像 特征提取 深度学习 双向长短时记忆网络 多尺度卷积滤波器
在线阅读 下载PDF
基于RISC-Ⅴ的深度可分离卷积神经网络加速器
16
作者 曹希彧 陈鑫 魏同权 《计算机学报》 EI CAS CSCD 北大核心 2024年第11期2536-2551,共16页
人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷... 人工智能时代,RISC-Ⅴ作为一种新兴的开源精简指令集架构,因其低功耗、模块化、开放性和灵活性等优势,使之成为一种能够适应不断发展的深度学习模型和算法的新平台.但是在硬件资源及功耗受限环境下,基础的RISC-Ⅴ处理器架构无法满足卷积神经网络对高性能计算的需求.为了解决这一问题,本文设计了一个基于RISC-Ⅴ的轻量化深度可分离卷积神经网络加速器,旨在弥补RISC-Ⅴ处理器的卷积计算能力的不足.该加速器支持深度可分离卷积中的两个关键算子,即深度卷积和点卷积,并能够通过共享硬件结构提高资源利用效率.深度卷积计算流水线采用了高效的Winograd卷积算法,并使用2×2数据块组合拼接成4×4数据片的方式来减少传输数据冗余.同时,通过拓展RISC-Ⅴ处理器端指令,使得加速器能够实现更灵活的配置和调用.实验结果表明,相较于基础的RISC-Ⅴ处理器,调用加速器后的点卷积和深度卷积计算取得了显著的加速效果,其中点卷积加速了104.40倍,深度卷积加速了123.63倍.与此同时,加速器的性能功耗比达到了8.7GOPS/W.本文的RISC-Ⅴ处理器结合加速器为资源受限环境下卷积神经网络的部署提供了一个高效可行的选择. 展开更多
关键词 神经网络 深度可分离卷积 RISC-Ⅴ Winograd快速卷积 硬件加速
在线阅读 下载PDF
基于多尺度特征融合预处理与深度稀疏网络的并行磁共振成像重建
17
作者 薛磊 段继忠 《数据采集与处理》 北大核心 2025年第4期1082-1095,共14页
磁共振成像(Magnetic resonance imaging,MRI)在医学诊断中具有关键作用,但过长的扫描时间可能会导致患者不适或产生运动伪影。并行成像技术和压缩感知理论表明,可通过对k空间数据进行欠采样从而提高扫描速度,其中并行MRI是一种通过利... 磁共振成像(Magnetic resonance imaging,MRI)在医学诊断中具有关键作用,但过长的扫描时间可能会导致患者不适或产生运动伪影。并行成像技术和压缩感知理论表明,可通过对k空间数据进行欠采样从而提高扫描速度,其中并行MRI是一种通过利用多个接收线圈同时采集多个数据通道来加速成像过程的技术。深度学习凭借其强大的特征提取和模式识别能力,在欠采样MRI重建中展现出巨大的潜力。为克服现有技术的局限性(如需要自动校准信号、重建不稳定等),提出了一种创新的重建方法,旨在从欠采样的k空间数据中高效、准确地重建高质量的并行磁共振图像。该方法的核心骨架为深度稀疏网络,该网络通过将求解稀疏模型的迭代收缩阈值算法的迭代过程展开,转化为深度神经网络框架内的一系列可训练层。另外,还引入基于多尺度特征融合的自适应预处理模块,通过融合普通卷积与异型卷积核,进一步提升网络的稀疏表示能力。实验结果表明,相较于其他先进方法,本文提出的方法在多个数据集上均表现出更优的重建性能,包括更高的峰值信噪比和结构相似性指数,以及更低的高频误差范数。 展开更多
关键词 并行磁共振成像重建 深度学习 卷积神经网络 深度稀疏网络 多尺度特征融合
在线阅读 下载PDF
基于连续小波分析与深度可分离卷积的水电机组工况识别
18
作者 马建军 王彤 +3 位作者 王浩宇 唐一中 郭鹏程 李昂 《水电能源科学》 北大核心 2024年第12期166-170,共5页
为快速、准确地判定水电机组运行状态,提出了一种基于连续小波分析与深度可分离卷积相结合的工况识别方法。该方法首先采集水电机组不同运行工况下的振动信号,通过连续小波变换对其进行解析,并获取其多尺度时频联合分布信息。随后,对时... 为快速、准确地判定水电机组运行状态,提出了一种基于连续小波分析与深度可分离卷积相结合的工况识别方法。该方法首先采集水电机组不同运行工况下的振动信号,通过连续小波变换对其进行解析,并获取其多尺度时频联合分布信息。随后,对时频信息进行了数据归一化、几何尺寸变换和格式转换等一系列处理,将其转换为数字图像形式。最后,构建了深度可分离卷积神经网络模型,依据数字图像信息对模型进行参数训练,该模型能够有效区分机组不同出力工况及过渡工况。根据我国西南地区某水电站的一台轴流转桨式水电机组的振动信号,采用所提方法实现了机组多种工况的识别,正确率达到98.06%。 展开更多
关键词 水电机组 振动信号 连续小波变换 深度可分离卷积
在线阅读 下载PDF
融合深度可分离卷积的多尺度残差UNet在PolSAR地物分类中的研究 被引量:5
19
作者 谢雯 王若男 +1 位作者 羊鑫 李永恒 《电子与信息学报》 EI CSCD 北大核心 2023年第8期2975-2985,共11页
极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR)地物分类作为合成孔径雷达(Synthetic Aperture Radar,SAR)图像解译的重要研究内容之一,越来越受到国内外学者的广泛关注。不同于自然图像,PolSAR数据集不仅具有独特的... 极化合成孔径雷达(Polarimetric Synthetic Aperture Radar,PolSAR)地物分类作为合成孔径雷达(Synthetic Aperture Radar,SAR)图像解译的重要研究内容之一,越来越受到国内外学者的广泛关注。不同于自然图像,PolSAR数据集不仅具有独特的数据属性同时还属于小样本数据集,因此如何更充分地利用数据特性以及标签样本是需要重点考虑的内容。基于以上问题,该文在UNet基础上提出了一种新的用于PolSAR地物分类的网络架构——多尺度可分离残差UNet(Multiscale Separable Residual Unet,MSR-Unet)。该网络结构首先利用深度可分离卷积替代普通2D卷积,分别提取输入数据的空间特征和通道特征,降低特征的冗余度;其次提出改进的多尺度残差结构,该结构以残差结构为基础,通过设置不同大小的卷积核获得不同尺度的特征,同时采用密集连接对特征进行复用,使用该结构不仅能在一定程度上增加网络深度,获取更优特征,还能使网络充分利用标签样本,增强特征传递效率,从而提高PolSAR地物的分类精度。在3个标准数据集上的实验结果表明:与传统分类方法及其它主流深度学习网络模型如UNet相比,MSR-Unet网络结构能够在不同程度上提高平均准确率、总体准确率和Kappa系数且具有更好的鲁棒性。 展开更多
关键词 PolSAR地物分类 UNet 残差结构 深度可分离卷积
在线阅读 下载PDF
基于多尺度注意力和深度可分离卷积的农田杂草检测 被引量:3
20
作者 王建翠 惠巧娟 吴立国 《中国农机化学报》 北大核心 2023年第5期182-187,共6页
农田杂草根除是促进农业稳定生产的前提。由于杂草种类多,且相同物种因大小、颜色和位置的变化多样,导致传统农田杂草检测算法性能不高。提出一种基于多尺度注意力和深度可分离卷积的农田杂草检测算法。首先,利用深度可分离卷积改进主... 农田杂草根除是促进农业稳定生产的前提。由于杂草种类多,且相同物种因大小、颜色和位置的变化多样,导致传统农田杂草检测算法性能不高。提出一种基于多尺度注意力和深度可分离卷积的农田杂草检测算法。首先,利用深度可分离卷积改进主干网络VGG-16,降低模型参数量,加快模型的训练;然后,采用多尺度注意力模块提取杂草的多尺度特征,增强模型对形态图像特征的捕获能力。通过在不同时间段测试多个农田杂草样本,结果表明:本文算法的精准率为94.69%、召回率为94.88%和F1值为93.82%。与当前主流杂草检测模型相比,在保持较高检测性能的基础上,具有更低的时间开销,可应用于农田杂草的自动检测。 展开更多
关键词 农田杂草检测 深度可分离卷积 多尺度注意力 形态图像特征
在线阅读 下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部