期刊文献+
共找到3,947篇文章
< 1 2 198 >
每页显示 20 50 100
构建多尺度深度卷积神经网络行为识别模型 被引量:31
1
作者 刘智 黄江涛 冯欣 《光学精密工程》 EI CAS CSCD 北大核心 2017年第3期799-805,共7页
为了减化传统人体行为识别方法中的特征提取过程,提高所提取特征的泛化性能,本文提出了一种基于深度卷积神经网络和多尺度信息的人体行为识别方法。该方法以深度视频为研究对象,通过构建基于卷积神经网络的深度结构,并融合粗粒度的全局... 为了减化传统人体行为识别方法中的特征提取过程,提高所提取特征的泛化性能,本文提出了一种基于深度卷积神经网络和多尺度信息的人体行为识别方法。该方法以深度视频为研究对象,通过构建基于卷积神经网络的深度结构,并融合粗粒度的全局行为模式与细粒度的局部手部动作等多尺度信息来研究人体行为的识别。MSRDailyActivity3D数据集上的实验得出该数据集上第11~16种行为的平均识别准确率为98%,所有行为的平均识别准确率为60.625%。结果表明,本方法能对人体行为进行有效识别,基本能准确识别运动较为明显的人体行为,对仅有手部局部运动的行为的识别准确率有所下降。 展开更多
关键词 卷积神经网络 深度学习 人体行为识别 计算机视觉 多尺度
在线阅读 下载PDF
基于多尺度深度卷积神经网络的故障诊断方法 被引量:34
2
作者 卞景艺 刘秀丽 +1 位作者 徐小力 吴国新 《振动与冲击》 EI CSCD 北大核心 2021年第18期204-211,共8页
针对机电装备故障诊断需要大量专家经验、故障特征识别困难的问题,在一维深度卷积神经网络基础上进行改进,构建多尺度一维深度卷积神经网络(M1DCNN),提出基于多尺度一维深度卷积神经网络的故障诊断方法:首先在网络输入层构建多个含有不... 针对机电装备故障诊断需要大量专家经验、故障特征识别困难的问题,在一维深度卷积神经网络基础上进行改进,构建多尺度一维深度卷积神经网络(M1DCNN),提出基于多尺度一维深度卷积神经网络的故障诊断方法:首先在网络输入层构建多个含有不同尺寸卷积核通道的特征提取层,对一维时序信号中故障特征进行多尺度特征提取,丰富智能体诊断信息,将所提取特征通过输入到包含多尺寸卷积核以及多样池化层中进行特征处理,最后合并多通道所处理的特征,使网络完成自我学习,从而实现故障诊断。将该方法应用到西储大学轴承故障数据及行星齿轮箱的故障数据诊断实验,结果表明该方法具有诊断精度高、鲁棒性强的特点,相较于一维卷积神经网络准确率提高1.25%,与反向传播神经网络、循环神经网络相比准确率平均提高3%以上,对网络特征提取效果进行可视化分析,结果表明该方法特征提取效果与诊断精度优于一维卷积神经网络。 展开更多
关键词 深度卷积神经网络(DCNN) 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于多尺度深度卷积神经网络的骨髓白细胞识别研究 被引量:3
3
作者 陈德海 潘韦驰 +1 位作者 丁博文 黄艳国 《现代电子技术》 北大核心 2020年第2期160-163,共4页
针对骨髓白细胞人工提取特征复杂,识别困难等问题,提出一种多尺度滤波深度卷积神经网络(MS-DCNN)模型。首先,该模型将传统的卷积神经网络模型的滤波器尺寸缩小,以减少模型的总体参数以提升网络模型训练的效率;其次,通过增加滤波器的个... 针对骨髓白细胞人工提取特征复杂,识别困难等问题,提出一种多尺度滤波深度卷积神经网络(MS-DCNN)模型。首先,该模型将传统的卷积神经网络模型的滤波器尺寸缩小,以减少模型的总体参数以提升网络模型训练的效率;其次,通过增加滤波器的个数和网络深度来提取骨髓血细胞更丰富的特征;最后通过在Sysmex(希森美康)公开数据集上对6类骨髓白细胞进行实验,并与其他主流分类方法进行对比。结果表明,该文提出的MS-DCNN模型准确率达到了98.9%,高于其他主流方法,其有效性得到了验证。 展开更多
关键词 骨髓白细胞 卷积神经网络 多尺度特征 深度学习 机器视觉 图像分类
在线阅读 下载PDF
ISW32离心泵深度一维卷积神经网络故障诊断 被引量:1
4
作者 贺婷婷 张晓婷 +1 位作者 李强 颜洁 《机械设计与制造》 北大核心 2025年第4期213-216,共4页
传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达... 传统卷积神经网络进行故障诊断过程费时费力,且人工提取特征未必完善。通过搭建离心泵故障诊断实验系统获得采样本,输入到深度一维卷积神经网络中进行故障诊断。通过提高1DCNN深度,为1DCNN模型设置了更多卷积层,最终实现D-1DCNN模型达到更强的特征提取能力。通过参数设置对深度一维卷积神经网络进行调节,确定最优的参数范围:学习率为0.01,卷积核选取为(1×3),批处理量为50,采取最大池化条件,以Adam优化器优化实验参数。实验测试研究结果表明:深度一维卷积神经网络在离心泵故障诊断实现了99.97%准确率,可以满足智能故障诊断的要求。该研究对提高ISW32离心泵的故障诊断能量具有很好的实际应用价值。 展开更多
关键词 离心泵 故障诊断 深度一维卷积神经网络 准确率 实验 采样
在线阅读 下载PDF
基于改进轻量级深度卷积神经网络的果树叶片分类及病害识别模型设计 被引量:3
5
作者 买买提·沙吾提 李荣鹏 +2 位作者 蔡和兵 赵明 梁嘉曦 《森林工程》 北大核心 2025年第2期277-287,共11页
新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识... 新疆是中国重要的林果产业基地,特色林果业是区域经济发展的重要组成部分。为预防果树病害制约林果业发展,设计一款归一化注意力(normalization-based attention module,NAM)轻量级深度卷积神经网络(MobileNet-V2)果树叶片分类及病害识别模型。其中融入轻量型的归一化注意力机制,提高模型对特征信息的敏感度,使模型关注显著性特征。同时,将L1正则化(L1 regularization或losso)添加到损失函数中,对权重进行稀疏性惩罚,抑制非显著性权重。试验结果表明,在叶片分类中,模型对自构建植物叶片病害识别数据集(Plant Village)、混合数据集的分类结果均表现良好,准确率分别达到97.05%、98.73%、94.91%,具有较好的泛化能力。在病害识别中,MobileNet-V2 NAM模型实现94.55%的识别准确率,高于深度卷积神经网络(AlexNet)、视觉几何群网络(VGG16)经典卷积神经网络(Convolutional Neural Networks,CNN)模型,且模型参数量只有3.56 M。MobileNet-V2 NAM在具有良好准确率同时保持了较低的模型参数量,为深度学习模型嵌入到移动设备提供技术支持。 展开更多
关键词 新疆 果树分类 病害识别 归一化注意力轻量级深度卷积神经网络(MobileNet-V2 NAM) 归一化注意力机制
在线阅读 下载PDF
基于多尺度通道注意力卷积神经网络的轴向柱塞泵故障诊断研究
6
作者 刘增光 张帅迪 +3 位作者 周焱 魏列江 岳大灵 冯珂 《机床与液压》 北大核心 2025年第14期124-130,共7页
针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑... 针对传统多尺度卷积神经网络对不同尺度的特征只是简单拼接而未考虑特征差异的问题,提出一种基于多尺度通道注意力卷积神经网络(MSCA-CNN)的轴向柱塞泵故障诊断方法。在轴向柱塞泵实验平台上设置5种典型故障(配流盘磨损、斜盘磨损、滑靴磨损、松靴故障、中心弹簧失效),采集6种工作状态(正常状态及5种典型故障)下的z轴振动信号。以小波变换为信号预处理模块,将加速度传感器采集的一维振动信号转化为时频图并作为诊断模型的输入信号,采用不同尺度的卷积核对时频图进行特征提取。通过通道注意力为每个通道赋予不同的权重值,使模型能够集中学习与通道密切相关的特征信息,从而提高轴向柱塞泵的故障分类能力和诊断的效率。搭建轴向柱塞泵故障诊断实验平台,验证所提方法的有效性。结果表明:该模型对6种工作状态的诊断准确率达到99.65%,相比传统多尺度卷积神经网络模型提高了3.16%,验证了MSCA-CNN模型在轴向柱塞泵故障诊断中的优越性。 展开更多
关键词 故障诊断 卷积神经网络 通道注意力 多尺度特征 柱塞泵
在线阅读 下载PDF
融合卷积深度置信网络与可拓神经网络的齿轮故障诊断方法
7
作者 王体春 夏天 费叶琦 《计算机集成制造系统》 北大核心 2025年第6期2178-2193,共16页
针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入... 针对齿轮传感器在单通道状态监测中的信息量和可信度不足、噪声干扰及变工况下数据分布差异等问题,提出一种融合增强卷积深度置信网络与自适应加权可拓网络的齿轮箱故障诊断方法。采用压缩感知算法重构收集到的多通道振动数据;通过引入软池化层优化的膨胀卷积深度置信网络进行特征提取,并采用注意力机制技术加权融合多通道特征;利用侧距优化的加权可拓神经网络完成齿轮故障分类。最后,通过公开数据集进行验证和对比分析表明,该模型相比卷积神经网络模型、深度置信网络模型、高斯卷积深度置信网络模型等具有更高的识别精度,在噪声干扰和变工况条件下具有良好的故障诊断性能。 展开更多
关键词 深度学习 卷积深度置信网络 可拓神经网络 故障诊断
在线阅读 下载PDF
基于多熵融合和多尺度卷积神经网络的风电机组轴承故障诊断方法
8
作者 张天瑞 周连弘 《太阳能学报》 北大核心 2025年第7期429-438,共10页
针对风电机组轴承在运行过程中收集到的故障信号较弱、状态特征难以有效表征的难题,提出一种基于多熵融合与多尺度卷积神经网络的风电机组轴承故障诊断新方法。首先对原始信号进行处理,分解出多个模态分量。随后,通过计算这些模态分量... 针对风电机组轴承在运行过程中收集到的故障信号较弱、状态特征难以有效表征的难题,提出一种基于多熵融合与多尺度卷积神经网络的风电机组轴承故障诊断新方法。首先对原始信号进行处理,分解出多个模态分量。随后,通过计算这些模态分量的多种熵值,构造出多熵融合矩阵,以充分表征信号的复杂特性。在此基础上,通过在卷积神经网络中集成不同尺寸的并行卷积核,设计一种结合多熵融合与多尺度卷积神经网络的故障诊断模型。结果表明,所提出的模型方法具有较好的诊断与泛化能力。 展开更多
关键词 风电机组 故障诊断 轴承 多尺度卷积神经网络 熵特征
在线阅读 下载PDF
基于卷积神经网络的图像分类深度学习模型综述 被引量:6
9
作者 刘鸿达 孙旭辉 +2 位作者 李沂滨 韩琳 张宇 《计算机工程与应用》 北大核心 2025年第11期1-21,共21页
使用神经网络模型进行图像分类任务一直是非常重要的研究方向,随着深度学习技术的发展,对神经网络模型的要求也越来越高。在识别率高的同时,对模型的参数量、训练时间也都有较高的要求。卷积神经网络一直是深度学习中针对图像处理的主... 使用神经网络模型进行图像分类任务一直是非常重要的研究方向,随着深度学习技术的发展,对神经网络模型的要求也越来越高。在识别率高的同时,对模型的参数量、训练时间也都有较高的要求。卷积神经网络一直是深度学习中针对图像处理的主流方法,主要介绍基于卷积神经网络的分类模型的发展历程,分析其不同阶段各个模型的搭建思路;介绍Transformer与卷积神经网络结合的相关模型以及各模型在其他领域的应用情况。最后,对卷积神经网络的发展进行了探讨。 展开更多
关键词 卷积神经网络 深度学习 图像分类 TRANSFORMER
在线阅读 下载PDF
基于车载成像与深度卷积神经网络的地表残膜识别方法 被引量:1
10
作者 吕继东 翟志强 +3 位作者 孟庆建 苗璐鹏 陈悦 张若宇 《农业机械学报》 北大核心 2025年第5期26-37,70,共13页
针对残膜回收机实际作业过程中存在多种相似非目标场景干扰,目标场景图像背景复杂且地表残膜尺寸小、破碎度大、无固定轮廓导致残膜覆盖率难以准确评估的问题,提出基于车载成像和深度卷积神经网络的地表残膜识别方法。构建了一种基于多... 针对残膜回收机实际作业过程中存在多种相似非目标场景干扰,目标场景图像背景复杂且地表残膜尺寸小、破碎度大、无固定轮廓导致残膜覆盖率难以准确评估的问题,提出基于车载成像和深度卷积神经网络的地表残膜识别方法。构建了一种基于多重特征增强的SE-DenseNet-DC分类模型,在DenseNet121模型每个稠密块的非线性组合函数前后引入通道注意力机制增强有效特征信息通道的权重,然后引入多尺度串联空洞卷积替换原始模型第1层卷积提升感受野并保持细节敏感度,实现目标场景图像的有效提取;构建了一种基于细节信息增强和多尺度特征融合的CDC-TransUnet分割模型,在TransUnet模型的编码器部分引入CBAM模块提取更加细微和精确的全局特征,在跳跃连接部分引入DAB模块融合多尺度语义信息并弥补编码和解码阶段特征之间的语义差距,然后在解码器部分引入CCAF模块减少上采样丢失的细节信息,实现目标场景图像复杂背景中地表残膜的精准分割。试验结果表明,SE-DenseNet-DC分类模型对目标场景图像的分类准确率、查准率、查全率和F1值分别达到96.26%、91.54%、94.49%和92.83%,CDC-TransUnet分割模型对目标场景图像中地表残膜分割平均交并比(MIOU)达到77.17%,模型预测残膜覆盖率与人工标注残膜覆盖率决定系数(R^(2))为0.92,均方根误差(RMSE)为0.23%,平均相对误差为2.95%,单幅图像评估时间平均为0.54 s。本文方法在残膜回收机回收后地表残膜覆盖率监测评估中具有较高的准确率和较快的推理速度,为残膜回收机回收质量实时准确评估提供技术支撑。 展开更多
关键词 棉田 残膜回收 车载成像 深度卷积神经网络 识别
在线阅读 下载PDF
基于CEEMDAN与改进一维多尺度卷积神经网络结合的滚动轴承故障诊断 被引量:1
11
作者 马宁 赵荣珍 郑玉巧 《兰州理工大学学报》 北大核心 2025年第1期45-54,共10页
针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对... 针对滚动轴承信号微弱故障特征提取困难、故障诊断依靠大量专家经验和故障识别率低等问题,提出了融合自适应噪声完备集合经验模态分解与改进一维多尺度卷积神经网络的滚动轴承故障诊断方法.首先,采用自适应噪声完备集合经验模态分解对轴承信号进行消噪处理,并利用皮尔逊相关系数法对所得IMF分量进行信号重构;其次,在网络首层将大尺寸卷积核与空洞卷积结合,并引入金字塔场景解析网络提出改进的一维多尺度卷积神经网络,对故障特征信息进行提取,采用PSO算法对卷积核进行参数寻优;最后,融合多尺度特征信息完成网络学习,并输入Sofmax分类器,实现滚动轴承故障诊断.采用西储大学轴承数据集和HZXT-DS-001型双跨综合故障模拟实验台的滚动轴承故障数据进行了验证.结果表明,相比传统故障诊断方法该方法可以得到良好的诊断结果. 展开更多
关键词 自适应噪声完备集合经验模态分解 一维卷积神经网络 多尺度特征提取 特征可视化 故障诊断
在线阅读 下载PDF
基于多尺度卷积神经网络和门控循环单元的离心泵叶轮故障诊断 被引量:1
12
作者 陶付东 智一凡 +4 位作者 李怀瑞 柳应倩 郝达 秦浩洋 付强 《机电工程》 北大核心 2025年第5期885-893,共9页
采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神... 采用传统的诊断方法难以准确识别离心泵的关键水力部件叶轮在离心力、流体动力等综合作用情况下产生的机械故障。针对这一问题,提出了一种多尺度卷积神经网络(MCNN)和门控循环单元(GRU)相结合的离心泵叶轮故障诊断方法。首先,在卷积神经网络的基础上引入了循环神经网络,建立了特征提取和故障分类模块,可以自动地对原始输入信号进行空间和时间特征提取并识别关键故障模式;然后,搭建了立式离心泵叶轮故障仿真实验台架,对叶轮不同故障下的泵体振动信号进行了采集,用于训练所提MCNN-GRU诊断模型;最后,利用MCNN和GRU搭建了的诊断模型和其他模型,对叶轮不同故障情况下的振动信号故障识别情况进行了对比,并对抗噪性能进行了分析。研究结果表明:无噪声情况下的单通道诊断准确率超过97.59%,在强噪声条件下多通道诊断准确率达99.13%,优于传统方法,表现出良好的抗噪性能;此外,通过三通道振动数据的融合,诊断准确率达100%,可验证多通道数据融合的优势。该研究结果可为离心泵叶轮故障诊断提供可靠的方案。 展开更多
关键词 离心泵 特征提取 多通道信息融合 多尺度卷积神经网络 门控循环单元
在线阅读 下载PDF
基于多尺度空洞卷积神经网络的滚动轴承故障识别方法
13
作者 汪小虎 赵荣珍 +1 位作者 邓林峰 郑玉巧 《兰州理工大学学报》 北大核心 2025年第3期55-63,共9页
针对现有卷积神经网络模型参数偏多导致滚动轴承智能诊断效率低和识别准确率受限于训练样本数量的问题,提出了基于多尺度空洞卷积神经网络的滚动轴承故障识别方法.该方法首先在模型的输入层采用大尺寸的空洞卷积核和标准卷积核提取一维... 针对现有卷积神经网络模型参数偏多导致滚动轴承智能诊断效率低和识别准确率受限于训练样本数量的问题,提出了基于多尺度空洞卷积神经网络的滚动轴承故障识别方法.该方法首先在模型的输入层采用大尺寸的空洞卷积核和标准卷积核提取一维振动信号的多尺度敏感特征,然后使用尺寸为1×1和3×1的小卷积核以及2×1的最大池化操作对输入层所提取敏感特征进一步提取深层抽象特征,最后用全局平均池化层代替传统卷积神经网络的全连接层.同时,分别采用西储大学轴承故障数据和实验室轴承故障数据进行实验验证.结果表明,该方法泛化性能良好,并且能够在训练样本较少的情况下出色地完成故障识别任务,即使在一定噪声干扰下也能够对轴承微弱故障准确识别. 展开更多
关键词 多尺度空洞卷积神经网络 滚动轴承 故障识别 小样本 微弱故障
在线阅读 下载PDF
融合深度强化学习的卷积神经网络联合压缩方法
14
作者 马祖鑫 崔允贺 +4 位作者 秦永彬 申国伟 郭春 陈意 钱清 《计算机工程与应用》 北大核心 2025年第6期210-219,共10页
随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果... 随着边缘计算、边缘智能等概念的兴起,卷积神经网络的轻量化部署逐渐成为研究热点。传统的卷积神经网络压缩技术通常分阶段地、独立地执行剪枝与量化策略,但这种方式没有考虑剪枝与量化过程的相互影响,使其无法达到最优的剪枝与量化结果,影响压缩后的模型性能。针对以上问题,提出一种基于深度强化学习的神经网络联合压缩方法——CoTrim。CoTrim同时执行通道剪枝与权值量化,利用深度强化学习算法搜索出全局最优的剪枝与量化策略,以平衡剪枝与量化对网络性能的影响。在CIFAR-10数据集上对VGG和ResNet进行实验,实验表明,对于常见的单分支卷积和残差卷积结构,CoTrim能够在精度损失仅为2.49个百分点的情况下,将VGG16的模型大小压缩至原来的1.41%。在复杂数据集Imagenet-1K上对紧凑网络MobileNet和密集连接网络DenseNet进行实验,实验表明,对于深度可分离卷积结构以及密集连接结构,CoTrim依旧能保证精度损失在可接受范围内将模型压缩为原始大小的1/5~1/8。 展开更多
关键词 卷积神经网络 深度强化学习 模型压缩 通道剪枝 权值量化 边缘智能
在线阅读 下载PDF
基于深度卷积神经网络的雷达伺服转台消隙策略
15
作者 鲍子威 吴影生 房景仕 《雷达科学与技术》 北大核心 2025年第1期101-108,118,共9页
精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐... 精密雷达伺服转台传动机构会随着装备不断运行使用逐渐磨损,表现为齿隙随着机构的磨损逐渐增大。传统双电机消隙控制策略能够消除齿隙,但该策略需要基于控制经验及装备初始传动机构齿隙一次性配置完成,这会导致随着机构磨损消隙效果逐渐变差,影响雷达跟踪精度。针对此缺陷,本文提出一种基于深度卷积神经网络(DCNN)的精密雷达伺服转台消隙策略,通过采集位置闭环传动轴振动数据,利用连续小波变换(CWT)得到时频图,作为DCNN训练输入,训练后得到识别模型,最后根据模型识别出伺服转台传动机构磨损程度来调整双电机消隙控制的偏置电流和拐点电流,通过对比实验验证了调整后消隙效果优于传统消隙方式,极大提高装备运行的可靠性,降低雷达伺服转台的维护成本。 展开更多
关键词 深度卷积神经网络 精密雷达伺服转台 双电机消隙 可靠性
在线阅读 下载PDF
基于差分进化和深度卷积神经网络的遥感图像融合方法
16
作者 朱澳临 陈应霞 《现代电子技术》 北大核心 2025年第19期9-16,共8页
针对遥感图像融合中存在特征信息提取不足、重要参数需要手工设置的问题,文中提出一种基于差分进化和深度卷积神经网络(CNN)的遥感图像融合方法——DETNet。首先,DETNet设计了一种具有双分支、双层和双向的网络结构,以分层和双向的方式... 针对遥感图像融合中存在特征信息提取不足、重要参数需要手工设置的问题,文中提出一种基于差分进化和深度卷积神经网络(CNN)的遥感图像融合方法——DETNet。首先,DETNet设计了一种具有双分支、双层和双向的网络结构,以分层和双向的方式将全色(PAN)图像的潜在多尺度空间细节注入到多光谱(MS)图像中。在三双结构中,采用了基于层次域的多级损失函数对多层结果进行约束。然后,基于多分辨率分析(MRA)法设计了嵌入DETNet中的CNN模块(MRAB),同时在模块中引入空间注意力机制,使网络更关注输入图像中的空间特征。接着,考虑到需要在不同尺度上注入不同对象,采用了多尺度卷积特征提取块(MSCB)对网络进行深化和扩展,以提高网络的非线性拟合能力。最后,依据多级损失函数确立目标函数,通过组合差分进化(CoDE)算法优化目标函数,避免陷入局部最优,从而保证融合质量。实验结果表明,采用DETNet方法得到的融合图像在空间细节信息和光谱细节方面均优于其他方法。 展开更多
关键词 遥感图像融合 组合差分进化优化 深度卷积神经网络 全色图像 多光谱图像 多尺度卷积特征提取块 目标函数
在线阅读 下载PDF
基于多种深度卷积神经网络模型的汉族青少年儿童肘关节X线骨龄推断 被引量:1
17
作者 李丹阳 周慧明 +4 位作者 万雷 刘太昂 李远喆 汪茂文 王亚辉 《法医学杂志》 北大核心 2025年第1期48-58,共11页
目的探讨适用于我国汉族青少年儿童肘关节X线图像的深度学习骨龄自动推断模型,并评估其性能。方法采集我国华东、华南、华中、西北地区6.00~<16.00周岁汉族青少年儿童肘关节正位X线图像943例(男性517例,女性426例),采用3种实验方案(... 目的探讨适用于我国汉族青少年儿童肘关节X线图像的深度学习骨龄自动推断模型,并评估其性能。方法采集我国华东、华南、华中、西北地区6.00~<16.00周岁汉族青少年儿童肘关节正位X线图像943例(男性517例,女性426例),采用3种实验方案(方案一:将预处理后的上述图像直接输入回归模型;方案二:以“肘关节重点骨骼标注”作为标签训练分割网络,将分割后的图像输入回归模型;方案三:以“肘关节全部骨骼标注”作为标签训练分割网络,将分割后的图像输入回归模型)进行肘关节X线骨龄预测。针对分割任务,从U-Net、UNet++和TransUNet中遴选出最优网络模型作为分割网络;针对回归任务,选择VGG16、VGG19、InceptionV2、InceptionV3、ResNet34、ResNet50、ResNet101和DenseNet121模型进行骨龄预测。采用随机抽样的方法抽取80%样本(754例)作为训练集和验证集,用于模型拟合和超参数的调整;20%(189例)作为内部测试集,用于测试训练后模型性能。另采集104例同源6.00~<16.00周岁汉族青少年儿童肘关节正位X线图像作为外部测试集。通过比较模型预测年龄与真实生活年龄之间的平均绝对误差(mean absolute error,MAE)、均方根误差(root mean square error,RMSE)、_(±0.7岁)的准确率(P_(±0.7岁))、_(±1.0岁)的准确率(P_(±1.0岁)),并绘制雷达图、散点图、热力图评估模型的性能。结果按照方案三的方法进行分割时,UNet++模型在学习率为0.0001时的分割损失为0.0004,准确率为93.8%,模型分割性能优异。在内部测试集中,DenseNet121模型采用该分割方法的模型预测结果最优,MAE、P_(±0.7岁)、P_(±1.0岁)分别为0.83岁、70.03%、84.30%。在外部测试集中,DenseNet121模型采用方案三的结果最优,平均MAE为0.89岁、平均RMSE为1.00岁。结论对青少年儿童肘关节X线图像进行骨龄自动推断时,分割网络推荐使用UNet++模型,DenseNet121模型在采用方案三时的性能最优。使用分割网络,特别是以包括肱骨远端、桡骨近端、尺骨近端全部肘关节作为标注区域的分割网络能提高肘关节X线骨龄推断的准确性。 展开更多
关键词 法医人类学 年龄推断 X线图像 肘关节 深度卷积神经网络 分割网络 青少年 儿童
在线阅读 下载PDF
基于注意力-残差双特征流卷积神经网络的深度图帧内编码单元快速划分算法
18
作者 贾克斌 吴岳珩 《北京工业大学学报》 北大核心 2025年第5期539-551,共13页
针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。... 针对三维高效视频编码(three-dimensional high efficiency video coding,3D-HEVC)深度图编码单元(coding unit,CU)划分复杂度高的问题,提出一种基于卷积神经网络(convolutional neural networks,CNN)的算法来实现快速深度图帧内编码。首先,提出一种具有3个分支的注意力-残差双特征流卷积神经网络(attention-residual bi-feature stream convolutional neural networks,ARBS-CNN)模型,其中基于残差模块(residual module,RM)和特征蒸馏(feature distill,FD)模块的2个分支用于提取全局图像特征,基于动态模块(dynamic module,DM)和卷积-卷积块注意力模块(convolutional-convolutional block attention module,Conv-CBAM)的分支用于提取局部图像特征;然后,将提取到的特征进行整合并输出,得到对深度图CU划分结构的预测;最后,将ARBS-CNN嵌入到3D-HEVC测试平台中,利用预测结果加速深度图帧内编码。与原始算法相比,提出的算法能在维持率失真性能几乎不受影响的条件下,平均减少74.2%的编码时间。实验结果表明,该算法能够在保持率失真性能的条件下,有效降低3D-HEVC的编码复杂度。 展开更多
关键词 三维高效视频编码(three-dimensional high efficiency video coding 3D-HEVC) 深度 卷积神经网络(convolutional neural networks CNN) 编码单元(coding unit CU)划分 帧内编码 双特征流
在线阅读 下载PDF
基于改进一维卷积神经网络模型的蛋清粉近红外光谱真实性检测 被引量:1
19
作者 祝志慧 李沃霖 +4 位作者 韩雨彤 金永涛 叶文杰 王巧华 马美湖 《食品科学》 北大核心 2025年第6期245-253,共9页
引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均... 引入近红外光谱检测技术,构建改进一维卷积神经网络(one-dimensional convolutional neural network,1D-CNN)蛋清粉真实性检测模型。该模型基于1D-CNN模型,无需对光谱数据进行预处理;同时在网络中加入有效通道注意力模块和一维全局平均池化层,提高模型提取光谱特征的能力,减少噪声干扰。结果表明,改进后的EG-1D-CNN模型可判别蛋清粉样本的真伪,对于掺假蛋清粉的检测率可达到97.80%,总准确率(AAR)为98.93%,最低检测限(LLRC)在淀粉、大豆分离蛋白、三聚氰胺、尿素和甘氨酸5种单掺杂物质上分别可达到1%、5%、0.1%、1%、5%,在多掺杂中可达到0.1%~1%,平均检测时间(AATS)可达到0.004 4 s。与传统1D-CNN网络结构及其他改进算法相比,改进后的EG-1D-CNN模型在蛋清粉真实性检测上具有更高精度,检测速度快,且模型占用空间小,更适合部署在嵌入式设备中。该研究可为后续开发针对蛋粉质量检测的便携式近红外光谱检测仪提供一定的理论基础。 展开更多
关键词 蛋清粉 近红外光谱 真实性检测 一维卷积神经网络 深度学习
在线阅读 下载PDF
基于卷积神经网络的立体匹配算法研究 被引量:1
20
作者 郭北涛 刘瀚齐 +1 位作者 刘琪 张丽秀 《组合机床与自动化加工技术》 北大核心 2025年第1期69-73,78,共6页
在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征... 在基于深度学习的立体匹配问题中,模型的网络结构、参数设置对匹配精度和匹配效率起到决定性作用。针对现有模型参数量大,精度低的问题,设计一种基于卷积神经网络的视差回归模型。首先,提出了基于扩张卷积和空间池化金字塔的多尺度特征提取网络,提高弱纹理区域的匹配精度;其次,改进了代价体相似度计算步骤,在保证匹配精度的同时,降低模型的参数量;最后,通过采取视差梯度信息和视差回归损失函数相结合的策略,有效地解决了在视差不连续区域中存在的边界信息保留不完整的问题。使用Middlebury数据集对模型进行验证,实验结果表明,相较于现有的立体匹配算法,在精度和速度方面都有所提升。 展开更多
关键词 机器视觉 立体匹配 卷积神经网络 深度学习
在线阅读 下载PDF
上一页 1 2 198 下一页 到第
使用帮助 返回顶部