宫颈上皮内瘤变(Cervical Intraepithelial Neoplasm,CIN)是宫颈浸润癌变相关度较高的癌前病变,准确检测CIN并对其分类处理有利于减少宫颈癌重症率。针对宫颈病变检测与分类准确率低等问题,文中提出一种融合多尺度特征与多注意力机制的Y...宫颈上皮内瘤变(Cervical Intraepithelial Neoplasm,CIN)是宫颈浸润癌变相关度较高的癌前病变,准确检测CIN并对其分类处理有利于减少宫颈癌重症率。针对宫颈病变检测与分类准确率低等问题,文中提出一种融合多尺度特征与多注意力机制的YOLOv5-CBTR(You Only Look Once version 5-Convolutional Block Transformer)宫颈病变图像检测方法。主干网络采用带有SENet(Squeeze-and-Excitation Networks)注意力机制的SE-CSP(SENet-BottleneckCSP)进行特征提取。引入Transformer编码器模块,融合多特征信息并放大,采用多头注意力机制增强病变区域的特征提取能力。在特征融合层引入卷积注意力模块,多尺度融合病变特征信息。在边界回归框计算中引入幂变换,加快模型损失函数的收敛,整体实现宫颈病变的检测与分类。实验结果表明,YOLOv5-CBTR模型对RGB(白光)宫颈病变图像检测与分类的准确率、召回率、mAP(mean Average Precision)和F值分别为93.99%、92.91%、92.80%和93.45%,在多光谱宫颈图像检测与分类中模型的mAP值和F值分别为97.68%和95.23%。展开更多
深度学习技术对心电图进行自动的疾病诊断具有十分重要的意义。但现有的分类算法存在计算速度慢、实时性差以及对心电信号多尺度特征利用不充分的问题,会对某些疾病产生漏检,影响自动诊断技术的效率和精确度。因此提出了一种融合注意力...深度学习技术对心电图进行自动的疾病诊断具有十分重要的意义。但现有的分类算法存在计算速度慢、实时性差以及对心电信号多尺度特征利用不充分的问题,会对某些疾病产生漏检,影响自动诊断技术的效率和精确度。因此提出了一种融合注意力机制与多尺度特征提取的轻量化心电图多标签分类网络(Lightweight Network with Attention for Multi Scale Classification,LAMSCN)。该模型可以有效地识别多种心脏病症状。实验结果表明,与MobileNet等主流模型相比,LAMSCN有效降低了模型参数量,同时对17种疾病的分类性能指标F1可以达到0.905,极大降低了对部署设备的要求。展开更多
文摘宫颈上皮内瘤变(Cervical Intraepithelial Neoplasm,CIN)是宫颈浸润癌变相关度较高的癌前病变,准确检测CIN并对其分类处理有利于减少宫颈癌重症率。针对宫颈病变检测与分类准确率低等问题,文中提出一种融合多尺度特征与多注意力机制的YOLOv5-CBTR(You Only Look Once version 5-Convolutional Block Transformer)宫颈病变图像检测方法。主干网络采用带有SENet(Squeeze-and-Excitation Networks)注意力机制的SE-CSP(SENet-BottleneckCSP)进行特征提取。引入Transformer编码器模块,融合多特征信息并放大,采用多头注意力机制增强病变区域的特征提取能力。在特征融合层引入卷积注意力模块,多尺度融合病变特征信息。在边界回归框计算中引入幂变换,加快模型损失函数的收敛,整体实现宫颈病变的检测与分类。实验结果表明,YOLOv5-CBTR模型对RGB(白光)宫颈病变图像检测与分类的准确率、召回率、mAP(mean Average Precision)和F值分别为93.99%、92.91%、92.80%和93.45%,在多光谱宫颈图像检测与分类中模型的mAP值和F值分别为97.68%和95.23%。
文摘深度学习技术对心电图进行自动的疾病诊断具有十分重要的意义。但现有的分类算法存在计算速度慢、实时性差以及对心电信号多尺度特征利用不充分的问题,会对某些疾病产生漏检,影响自动诊断技术的效率和精确度。因此提出了一种融合注意力机制与多尺度特征提取的轻量化心电图多标签分类网络(Lightweight Network with Attention for Multi Scale Classification,LAMSCN)。该模型可以有效地识别多种心脏病症状。实验结果表明,与MobileNet等主流模型相比,LAMSCN有效降低了模型参数量,同时对17种疾病的分类性能指标F1可以达到0.905,极大降低了对部署设备的要求。