期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度梯度角和SVM的正面人脸识别方法
被引量:
2
1
作者
赵武锋
严晓浪
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2008年第4期590-592,617,共4页
为了提高人脸识别算法性能,提出了一种多尺度梯度角(MSGA)和支持向量机(SVM)相结合的新的正面人脸识别方法.分析了梯度角对光照的不敏感特性和反对称双正交小波(ASBW)的导数特性.获取多尺度梯度角特征,并利用其所具有的降噪能力和有效...
为了提高人脸识别算法性能,提出了一种多尺度梯度角(MSGA)和支持向量机(SVM)相结合的新的正面人脸识别方法.分析了梯度角对光照的不敏感特性和反对称双正交小波(ASBW)的导数特性.获取多尺度梯度角特征,并利用其所具有的降噪能力和有效降低表情变化、光照变化等因素引起的影响,使算法具备较强的鲁棒性.采用了分类性能优越的支持向量机技术,提高了泛化能力.并在Yale人脸数据库上与归一化原始数据、小波处理后数据进行了仿真比较,实验数据显示,不论使用主分量分析(PCA)还是线性鉴别分析(LDA)降维,在相同的维数条件下,新方法的识别性能都优于其他方法.
展开更多
关键词
反对称双正交小波
支持向量机
线性鉴别分析
主成分分析
多尺度梯度角
非负矩阵分解
在线阅读
下载PDF
职称材料
题名
基于多尺度梯度角和SVM的正面人脸识别方法
被引量:
2
1
作者
赵武锋
严晓浪
机构
浙江大学超大规模集成电路设计研究所
出处
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2008年第4期590-592,617,共4页
文摘
为了提高人脸识别算法性能,提出了一种多尺度梯度角(MSGA)和支持向量机(SVM)相结合的新的正面人脸识别方法.分析了梯度角对光照的不敏感特性和反对称双正交小波(ASBW)的导数特性.获取多尺度梯度角特征,并利用其所具有的降噪能力和有效降低表情变化、光照变化等因素引起的影响,使算法具备较强的鲁棒性.采用了分类性能优越的支持向量机技术,提高了泛化能力.并在Yale人脸数据库上与归一化原始数据、小波处理后数据进行了仿真比较,实验数据显示,不论使用主分量分析(PCA)还是线性鉴别分析(LDA)降维,在相同的维数条件下,新方法的识别性能都优于其他方法.
关键词
反对称双正交小波
支持向量机
线性鉴别分析
主成分分析
多尺度梯度角
非负矩阵分解
Keywords
anti symmetrical biorthogonal wavelet (ASBW)
support vector machine (SVM)
linear discriminant analysis (LDA)
principal component analysis (PCA)
multi-scale gradient angle MSGA) non-negative matrix factorization (NMF)
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度梯度角和SVM的正面人脸识别方法
赵武锋
严晓浪
《浙江大学学报(工学版)》
EI
CAS
CSCD
北大核心
2008
2
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部