期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多尺度卷积核CNN的脑电情绪识别 被引量:9
1
作者 戴紫玉 马玉良 +3 位作者 高云园 佘青山 孟明 张建海 《传感技术学报》 CAS CSCD 北大核心 2021年第4期496-503,共8页
针对传统的人工特征选取需要耗费大量时间和精力的问题,本文在传统卷积神经网络(convolutional neural networks,CNN)模型的基础上,提出了一种基于多尺度卷积核CNN的特征提取与分类方法,并在脑电情绪识别分类上进行了验证。本文首先进... 针对传统的人工特征选取需要耗费大量时间和精力的问题,本文在传统卷积神经网络(convolutional neural networks,CNN)模型的基础上,提出了一种基于多尺度卷积核CNN的特征提取与分类方法,并在脑电情绪识别分类上进行了验证。本文首先进行了通道选择方面的研究,其次使用多尺度卷积核CNN模型对提取了微分熵(differential entropy feature,DE)特征的脑电数据进行情绪三分类实验,相比于传统的CNN模型,多尺度卷积核CNN模型在卷积层中采用多个尺度的卷积核,同时从高维度与低维度对脑电信号进行二次特征提取。实验结果表明,预处理数据在33通道的情绪分类平均准确率为89.72%,几乎接近全通道的平均准确率;多尺度卷积核CNN在微分熵特征上的情绪三分类取得了98.19%的平均分类准确率,实验结果证明了该模型的有效性和鲁棒性。 展开更多
关键词 脑电信号(EEG) 情绪识别 多尺度卷积卷积神经网络 微分熵(DE)
在线阅读 下载PDF
基于多特征融合的图像区域几何标记
2
作者 刘威 遇冰 +1 位作者 周婷 袁淮 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2017年第7期927-931,共5页
提出一种基于多特征融合的图像区域几何标记方法.首先,提出了一种新型卷积网络结构——多尺度核卷积网络用于提取像素点的多尺度特征信息,推断像素点的几何类别,并结合图像超像素分割获得图像超像素区域的几何标记;其次,将提取的多尺度... 提出一种基于多特征融合的图像区域几何标记方法.首先,提出了一种新型卷积网络结构——多尺度核卷积网络用于提取像素点的多尺度特征信息,推断像素点的几何类别,并结合图像超像素分割获得图像超像素区域的几何标记;其次,将提取的多尺度特征与超像素区域传统特征相结合,建立超像素区域的特征表达.最后,建立超像素图像的条件随机场(conditional random field,CRF)模型,对超像素区域的几何类别进行推断.在公开数据集Geometric Context(GC)上的实验结果表明,同已有算法相比,所提方法提高了图像区域几何标记的准确率. 展开更多
关键词 多特征融合 多尺度核卷积网络 图像区域几何标记 特征学习 条件随机场模型
在线阅读 下载PDF
基于MSK-CNN和多源机电信息融合的同步发电机故障诊断方法 被引量:14
3
作者 马明晗 侯岳佳 +3 位作者 李永刚 贺鹏康 齐鹏 武玉才 《电机与控制学报》 EI CSCD 北大核心 2023年第1期1-11,共11页
同步发电机结构复杂且运行环境多变,传统的故障诊断方法依赖于专家的先验知识,易受噪声干扰,难以准确识别且耗时耗力。本文提出一种基于多尺度核卷积神经网络(MSK-CNN)和多源机电信息融合的同步发电机故障诊断方法,直接从原始信号中自... 同步发电机结构复杂且运行环境多变,传统的故障诊断方法依赖于专家的先验知识,易受噪声干扰,难以准确识别且耗时耗力。本文提出一种基于多尺度核卷积神经网络(MSK-CNN)和多源机电信息融合的同步发电机故障诊断方法,直接从原始信号中自动学习有效的故障特征,同时在单个框架中对故障类型进行分类,为同步发电机提供端到端的故障诊断系统,无需额外的信号处理和专家经验。首先通过多尺度核算法在不同尺度上并行获取互补且丰富的诊断信息,提高特征学习能力。然后采用多源机电信息融合,选取相电压、转子振动、定子振动信号分别作为输入进行特征融合。最后以一台SDF-9型1对极同步发电机为实验对象进行实验验证,故障诊断准确率为99.64%,与传统故障诊断方法进行对比,显示了该方法的优越性。 展开更多
关键词 同步发电机 深度学习 多尺度卷积神经网络 故障诊断 多源机电信息融合 多尺度融合
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部