期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
联合矢量数据和深度学习的遥感影像对象级分类样本自动选择方法
被引量:
1
1
作者
何燕兰
王胜利
+1 位作者
朱寿红
刘文杰
《遥感信息》
CSCD
北大核心
2023年第6期15-21,共7页
针对目前的样本获取手段过于依赖人工制作,难以满足当前业务化实际需求的问题,提出了一种基于历史矢量数据和双线性差异化集成卷积神经网络支持的对象级样本自动选择方法。该方法首先通过对影像多尺度分割获取同质性较高的地物块状图斑...
针对目前的样本获取手段过于依赖人工制作,难以满足当前业务化实际需求的问题,提出了一种基于历史矢量数据和双线性差异化集成卷积神经网络支持的对象级样本自动选择方法。该方法首先通过对影像多尺度分割获取同质性较高的地物块状图斑,将历史矢量携带的标签信息赋值给该块状图斑;然后,通过图斑边界约束自适应生成多尺度样本集;最后,利用双线性差异化集成卷积神经网络进行样本的选择和纯化,通过属性关联实现对象级的高质量样本获取。无人机影像的分类结果表明,该方法充分结合了历史矢量数据先验几何约束和属性信息,顾及了最新影像中地物的光谱特性、边界特征和纹理信息,并引入深度学习方法实现了多尺度样本的纯化处理,实现了快速获取满足实际需求的高可靠性对象级分类样本。
展开更多
关键词
矢量数据
双线性差异化
集
成卷积神经网络
多尺度样本集
面向对象
样本
自动选择
在线阅读
下载PDF
职称材料
题名
联合矢量数据和深度学习的遥感影像对象级分类样本自动选择方法
被引量:
1
1
作者
何燕兰
王胜利
朱寿红
刘文杰
机构
江苏省地质测绘院
中国矿业大学环境与测绘学院
江苏省兰德土地工程技术有限公司
出处
《遥感信息》
CSCD
北大核心
2023年第6期15-21,共7页
基金
江苏省地质矿产勘查局科研项目(2020KY11、2022KY15)。
文摘
针对目前的样本获取手段过于依赖人工制作,难以满足当前业务化实际需求的问题,提出了一种基于历史矢量数据和双线性差异化集成卷积神经网络支持的对象级样本自动选择方法。该方法首先通过对影像多尺度分割获取同质性较高的地物块状图斑,将历史矢量携带的标签信息赋值给该块状图斑;然后,通过图斑边界约束自适应生成多尺度样本集;最后,利用双线性差异化集成卷积神经网络进行样本的选择和纯化,通过属性关联实现对象级的高质量样本获取。无人机影像的分类结果表明,该方法充分结合了历史矢量数据先验几何约束和属性信息,顾及了最新影像中地物的光谱特性、边界特征和纹理信息,并引入深度学习方法实现了多尺度样本的纯化处理,实现了快速获取满足实际需求的高可靠性对象级分类样本。
关键词
矢量数据
双线性差异化
集
成卷积神经网络
多尺度样本集
面向对象
样本
自动选择
Keywords
vector data
integrated differential convolution neural network
multi scale sample set
object-oriented
automatic sample selection
分类号
TP75 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
联合矢量数据和深度学习的遥感影像对象级分类样本自动选择方法
何燕兰
王胜利
朱寿红
刘文杰
《遥感信息》
CSCD
北大核心
2023
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部